
/xrtiTErt Cofiy

6502

MACRO ASSEMBLER

AND

TEXT EDITOR

FOR PET, APPLE, SYM and OTHERS

>ASSEMBLE LIST

0100 JMOVE FROM TABLE1 TO TABLE2
0110 .BA $400 -

0400- AO 00 0120 START LDY #00
0402- B9 OB 04 0130 LOOP LDA TABLE1,Y
0405- 99 OB 05 0140 STA TABLES,Y
0408- C8 0150 I NY
0409- DO F7 0160 BNE LOOP

0165
0170 •

040B- 0180 TABLE1 .DS 256 : STORAGE
050B- 0190 TABLE2 .DS 256 ; •X*

0200 •

0210 .EN

LABEL FILE t/ = EXTERNAL3

START= 0400 L00P=0402 TABLE1=040B
TABLE2=050B

//OOOO,060B,060B

>

This ASSEMBLER and TEXT EDITOR was written in machine language-not BASIC

I COPYRIGHT 1979 BY CARL MOSER

COPYRIGHT NOTES

This manual and all object medias (Cassettes, Floppy Disks, etc.) is serial
numbered and protected by a legitimate copyright. No part of this manual
may be copied or reproduced without the express written permission of
the copyright owner, Carl Moser. You may make a backup copy of the
cassette or floppy disk to protect your copy of this software. It is
though a Federal crime to make a copy of the manual, cassette, or
floppy disk for use by anyone other than the individual who purchased
this software or the individual a company purchased the software for.

Thus, you are in violation of Federal Copyright Laws if you do one of the
following:

- Make a copy of the manual.
- If you allow someone else to use your copy (or backups) of the

object media (Cassettes, Floppy Disks, etc.) while you retain a
copy or are using a copy.

- If your Company or others purchase one or more copies and more
individuals use this software than the number purchased.

- If you allow someone else to do the copying of this material,
you will be considered as a party to the infringement.

A reward will be provided for anyone who supplies information which leads to
the prosecution of parties who violate this copyright.

We do not presume that you are or will violate copyright laws. Most users
do not. Some though do, and may not realize the consequences for violation
of this Federal Law. Penalities and fines can be quite severe for both
individuals and companies who infringe on this copyright.

Most importantly, software houses like the one which wrote this software
have a tremendous investment in this software that can not be fully
recovered if current illegal copying continues. Also, updates and
program maintenance will have to be terminated if the return on investment
is not sufficient.

Finally, an expressed appreciation is given to the purchaser of this
software. We hope that you find it a valuable and worthwhile investment.

T

t

PRINTING CO.
620 S. Peace Haven Road

Winston-Salem, N.C. 27103

WK WILL ASSIST WITH SPECIAL DESIGNS

(919) 765-2tki5 JOHNNY <fc HAZEL WEISNER

%

s

1.
2.

3.

4.

5.

6.
7.
8.
9-

10.

11.
12 .
13-

Serial Number:
Computer:

Copyright 1979 by Carl Moser. All rights reserved.

6502 RELOCATING MACRO ASSEMBLER/TEXT EDITOR
1.0

Contents PaSe
Introduction 2

Text Editor (TED) Features
A. Commands
B. Entry/Deletion of text

3
4
8

Assembler (ASSM) Features 9
A. Source statement syntax 10
B. Label File (or Symbol Table) 16
C. Assembling not from tape 16
D. Assembling from tape 16
E. Creating a relocatable object file (>0U) 17
F. MACROS 18
G. Conditional Assembly 21
H. Default parameters on entry to ASSM 23

Examples 24
A. Listing illustrating text entry 24
B. Output listing from ASSM 24

Using the Relocating Loader-

Configure ASSM/TED for Disc operation 25

Using ASSM/TED with Disc 26

Error Codes 27

File Numbers 28

String Search and Replace Commands 29
A. Edit Command 29
B. Find Command 30

Control Codes 30

Special Notes 31

Specific Application Notes 33
A. PET
B. APPLE
C. SYM

t

V

?

2.

1. INTRODUCTION

This 6502 relocating Macro assembler (ASSM) and text editor
(TED) resides simultaneously in approximately 8k bytes of
memory. The ASSM/TED can be loaded into RAM or stored in ROM
memory. Sufficient memory must be provided for not only the
ASSM/TED but for a text file and label file (symbol table).
Approximately 2k is sufficient memory for the text file for
small programs or larger programs if assembled from tape. A
good rule of thumb is one byte of memory for the label file for
each byte of object code. If an executable object code file
is to be stored in memory during assembly, sufficient memory
must be provided for that also. On cold start entry (2000), the
ASSM/TED will set the file boundaries as follows.

Text file = k. , _ _
. Label file = y See part 13

Relocatable Object buffer = _J

The label file and text file that this ASSM/TED generates is
position independent and may be located pratically anywhere in
RAM memory. The object code file location is dependent on the
beginning of assembly (.BA pseudo op) -and the .MC pseudo op.

The ASSM/TED was designed such that records in the label file
and text file are variable in length and directly dependent
on the number of characters to be stored. This results in
more efficient utilization of memory.

Some unique features of this ASSM/TED are:

Macro and conditional assembly support.
. Labels up to 10 characters in length.

Auto line numbering for ease of text entry.
Creates both executable code in memory and relocatable
object code on tape.
Manuscript feature for composing letters and other text.
Loading and storing of text on tape.
Vectors for linkage to disc operating systems.
Supports up to two tape decks, CRT and keyboard, and
printer.

. String search and replace capability, plus other
powerful editing commands.

Throughout this document, output generated by the ASSM/TED
is underlined to distinquish from user input.

entry to ths ASSM/TED is at address 2000. If the break
command (>BR) is executed, one may return to the address following
the break. Initial entry provides the following default
parameters:

. Format - set

. Manuscript - clear

. Auto line numbering - 0 or clear
Text file - clear

. Tape decks - off

The ASSM/TED is designed to operate with a record deck and a
separate play deck and/or disc system. A single record/play
deck may be used but one will not be able to create relocatable
object files when assembling from tape.

This software has been extensively tested and is believed to be
entirely reliable. It would be foolish to guarantee a program
of this size and complexity to be free of errors. Therefore,
we assume no responsibility for the failure of this software.

This ASSM/TED is protected by a copyright. This material may
not be copied, reproduced or otherwise duplicated without
written permission from the owner, Carl Moser. The purchaser
may however make copies of this software on his storage medium
(such as paper, disc, or magnetic tape) for his own personal
use. The purchase of this software does not convey any license
to manufacture, modify and/or copy this product. Providing
copies of this software to friends or associates without
authorization is a violation of Federal law.

2. TEXT EDITOR (TED) FEATURES

The TED occupies approximately one-half the total memory space
of this software. The purpose of the TED is to setup and
maintain the source file by interacting with the user via various
commands.

When inputting to the TED, the user has the following options:

Control H (hex 08) or
RUBOUT (hex 7F) - Deletes previous character. More than

one of these may be entered to delete a
number of characters

Control X (hex 18) - Deletes the entire line.

Break - Halts outputting, and waits for input of appropriate
control code (part ll).

4.

A. Commands

The TED provides 27 command functions. Each command mnemonic must
begin immediately after the prompter (>). When entered, a command
is not executed until a carriage return is given. Although a
command mnemonic such as >PR may be several non-space characters
in length, the ASSM/TED only considers the first two. For example,
>P.R, >PRI, >PRINT, and >PRETTY will be interpreted as the print

"command.

Some commands can be entered with various parameters. For example,
>PRINT 10 200 will print out the text in the text file with line
numbers between 10 and 200. One must separate the mnemonic and
the parameters from one another by at least one space. - Do not

use commas.

A description of each command follows:

>AUT0 x

Automatic line numbering occurs when an x value not equal zero

is entered. x specifies the increment to be added to each line
number. Auto line numbering starts after one enters the first
line. To prevent auto line numbering from reoccurring, enter

>Au or >Au 0.

>GET Fx y

Get text file with data associated with file number x from tape
or disc. The data will be loaded at line number y, or will be
appended to end of the text file if the keyword APPEND is entered

for y. Defaults are x=00 and y = line number 0.

Examples: >GE
>GET FI3 100
^GET APPEND __

>PUT Fw x y

Put text file between lines x and y to tape or disc, and assign
the recorded data file number w. If w is not entered, 00 will
be assumed. If x and y are not entered, the entire text file is
recorded. If the letter X is entered as the parameter such as

>PU X and end of file mark is recorded.

>NUMBER x y

Renumber the text file starting at line x in text file and
expanding by constant y. For example to renumber the entire

text file by 10, enter >NU 0 10. _

>DELETE x y

Delete entries in text file between line numbers x and y
only x Is entered, only that line is deleted.

If

>LABELS

Print out the label file.

>PASS

Execute the second pass of assembly. Not required if source is
all in internal memory and the .CT pseudo op is not encountered.

>FORMAT w

Format the text file (where w = SET) or clear the format feature
(where w = CLEAR). Format set tabulates the text file when
outputted. This lines up the various source statement fields.
This feature, set or clear, does not require extra memory.
Assembly output is dependent on the state of the format feature.

>DUPLICATE Fw

Duplicate files from tape 1 to tape 0 until file w. This command
starts by reading the next file on tape 1 (or the disc input)
and if that file is file w or an end of file (EOF) mark then
it stops. If not, the file just read will be written to tape
<) (or the disc output) and then tape 1 is read again. This
continues until file w or EOF is encountered.

>COPY x y z

Copy lines y thru z in the text file to just after line number
x. The copied lines will all have line numbers equal x. At
completion, there will be two copies of this data - one at x
and the original at y. _

>MOVE x y z

Move lines y thru z in the text file to just after line number
x. The moved lines will all have line numbers equal x. The
original lines y thru z are deleted.___

>SET ts te Is le bs

If no parameters are given, the text file, label file, and
relocatable buffer boundaries (addresses indicating text file
start, end, label file start, end, and relocatable buffer start)
will be output on first line, then on the second line the output
consists of the present end of data in the text file followed
with the present end of data in the label file. This command

is commonly used to determine now much memory is remaining in
the text file. If you are Inputting hex digits for these
addresses^ preceed each with a T$T character.

>0N n

Turn on tape deck n (where n is 0 (record), or 1 (play) deck).
If an n is not entered, 0 is assumed.

8.

>OFF n

Turn off tape deck n (where n is 0 (record), or 1 (play) deck).
If an n is not entered, 0 is assumed.

>CLEAR

Clear text file and turn off tape decks.

>BREAK

Break to monitor (executes BRK instruction). A return to the
TED can be performed at the address immediately after the break
instruction. (A control C operation does the same thing).

>n

Any entry beginning with one or more decimal digits is considered
and entry/deletion of text. Details on this follows._

>EDIT tSl tS21 or EDIT n

See part 10A.

B. Entry/Deletion of Text

Source is entered in the text file by entering a line number
(0-9999) followed by the text to be entered. The line number
string can be one to n digits in length. If the string is greater
than 4 digits in length, only the right-most 4 are considered.
Text may be entered in any order but will be inserted in the text
file in numerical order. This provides for assembling, printing,
and recording in numerical order. Any entry consisting of a line
number with no text or just spaces results in a deletion of
any entry in the text file with the same number. If text is
entered and a corresponding line number already exists in the
text file, the text with the corresponding number is deleted

and the entered text is inserted.

To delete the entire file, use the >CL command.

To delete a range of lines, use the >DE command. To edit an
existing line or lines having similar characteristics, use the

>ED command.

9.
5

To find a string, use the >FI command. To move or copy lines
use the >M0 or >C0 commands. To copy from input tape to output
tape until a specific file, use the >_DU command.

The CRT input buffer is 80 characters in length. There are
10 tab points preset at 8 character intervals. Thus, the first
tab point is at the 8-th column, the second at the l6-th
column, etc. Entry of control I (*l) will result in a movement
to the next tab point. When inputting, the cursor may not
position exactly at the tab point but will position properly
when the text file is outputted via the >PR command.

Text may be entered more easily by use of the auto line
numbering feature (>AU command). Any >AU x where x does not
equal 0 puts the TED in the auto line number mode. To temporarily
exit from this mode, type >//. To prevent auto line numbering

from reoccurring every time you insert or delete, enter >AU 0.

When.entering source for the assembler, one need not space over
to line up the various fields. Labels are entered immediately

the line number or ^ when in auto line numbering.
Separate each source field with one or more spaces. If the
format feature is set (see >F0 command), the TED will automatically
line up the fields. Note: If a space is entered before the
label, the TED.will line up the label in the next field. This
should result in an assembler error when assembled. If a
control I (tab) is entered, a tab to the 8-th column is
performed. These tabs are preset and can not be changed.
Commands, mnemonics, and pseudo ops may be entered as upper
case or lower case characters. Assembly labels may also be
entered in.upper or lower case but a label entered as upper case
will be unique to the same label entered as lower case.

3. ASSEMBLER (ASSM) FEATURES

The ASSM scans the source program in the text file. This requires
at least two passes (or scans). On the first pass, the ASSM
generates a label file (or symbol table) and outputs any errors
that may occur. On the second pass the ASSM creates a listing
and/or object file using the label file and various other
internal labels.

A third pass (via >0U) may be performed in order to generate a
relocatable object file of the program in the text file. This
file is recorded on tape deck 0 (record deck) and may be reloaded
into the memory using the relocating loader at practically any
location.

t

10.

A. Source Statement Syntax

Each source statement consists of 5 fields as described below:

ne number label mnemonic operand comment

label

The first character of a label may be formed from the following
characters:

(a) A thru Z C \ ^ *

While the remaining characters which form the label may be

constructed from the above characters and the following
characters:

. / 0 thru 9 : * < > ?

The label is entered immediately after the line number or
prompter (>) if in the auto line numbering mode.

Mnemonic or
Pseudo Op

Separated from the label by one or more spaces and consists of
a standard 6502 mnemonic of table A or pseudo op of table B.

Operand

Separated from mnemonic or pseudo op by one or more spaces and
may consist of a label expression from table C and symbols
which indicate the desired addressing mode from table D.

Comment

Separated from operand field by one or more spaces and is free
format. A comment field begins one or more spaces past the
mnemonic or pseudo op if the nature of such does not require an
operand field. A free format comment field may be entered if
a semicolon (;) immediately follows the line number or > if
in auto line numbering mode.

Note: It is permissable to have a line with only a label. This
is commonly done to assign two or more labels to the same

address.

To insert a blank line, enter control I (*1).

11.

TABLE A - 6502 Mnemonics

.OS

Set the object store option so that object code after the .OS

is stored in memory on pass 2.

12.

v»r

t

.OC

Clear the object store option so that object code after the .OC
Is not stored in memory. This is the default option._

.MC label expression

When storing object code* move code to the address calculated
from the label expression but assemble in relation to that
specified by the .BA pseudo op. An undefined address results
in as immediate assembly halt.__

.SE label expression

Store the address calculated from the label expression in the
next two memory locations. Consider this address as being an
external address. Note: If a label is assigned to the .SE,
it will be considered as internal.

.RC

Provide directive to relocating loader to resolve address
information in the object code per relocation requirements
but store code at the pre-relocated address. This condition
remains in effect until a .RS pseudo op is encountered. The
purpose of the .RC op is to provide the capability to store an
address at a fixed location (via .SI pseudo op) which links
the relocatable object code module to a fixed module._

.EJ

Eject to top of next page if >HA SET was previously entered.

.MD

Macro definition. See part 3F.

.ME

Macro end. See part 3F.

.EC

Suppress output of macro generated object code on source listing.
See part 3F. This is the default state.

.ES

Output macro generated object code on source listing. See part 3F.

13.

.DS label exp.

Define a block of storage. For example, if label exp. equated
'to 4, then ASSM will skip over 4 bytes. Note: the initial
contents of the block of storage is undefined.

.RS

Provide directive to relocating loader to resolve address
information in the object code per relocation, and store the
code at the proper relocated address. This is the default
condition.

.BY

Store bytes of data. Each hex, decimal, or binary byte must be
separated by at least one space. An ascii string may entered
by beginning and ending with apostrophes ('). Example: .BY
00 1ABCD' 47 69 'Z' $FC #1101_

.SI label expression

Store the address calculated from the label expression in the
next two memory locations. Consider this address as being an
internal address.

label .DE label exp.

Assign the address calculated from the label expression to the
label. Designate as external and put in label file. An error
will result if the label is omitted.

label .DI label exp.

Assign the address calculated from the label expression to the
label. Designate as internal and put in label file. An error
will result if the label is omitted. _

.EN

Indicates the end of the source program.

Note: Labels may be entered for any of the pseudo ops.

c

t

t

14.

TABLE C - Label Expressions

A label expression must not consist of embedded spaces end is
constructed from the following:

Symbolic Labels:

One to ten characters consisting of the ascii characters as

previously defined.

Non-Symbolic Labels:

Decimal, hex, or binary values may be entered. If no special
symbol preceeds the numerals then the ASSM assumes decimal
(example: 147). If $ preceeds then hex is assumed (example
$F3) . If $ preceeds then binary is assumed (example. $11001).
Leading zeros do not have to be entered. If the string is
greater than 4 digits, only the rightmost 4 are considered.

Program Counter:

To indicate the current location of the program counter use the

symbol =.

Arithmetic Operators:

Used to separate the above label representations:
addition - subtraction

Examples of some valid label expressions follow:

LDA #$1101 load immediate OD
STA *TEMP+$01 store at byte following TEMP
LDA $471E36 load from 1E36
JMP LOOP+C- $46l
BNE =+8 branch to current PC plus 8 bytes

One special label expression is A, as in ASL A. The letter A
followed with a space in the operand field indicates accumulator
addressing mode. Thus LDA A is an error condition since this
addressing mode is not valid for* the LDA mnemonic.

ASL A+$00 does not result in accumulator addressing but instead
references a memory location.

15.

f-
TABLE D - ADDRESSING MODE FORMATS

Immediate

LDA #$1101 binary OD
LDA #$F3 hex F3
LDA #F3 load value of label F3
LDA #'A ascii A
LDA #H, label expression hi part of the address of the label

expression
LDA #L, label expression lo part of the address of the label

expression

Absolute

LDA label expression

Zero Page

LDA *label expression the asterisk (*) indicates zero
page addressing

Absolute Indexed

LDA label expression,X
LDA label expression,Y

Zero Page Indexed

LDA *label expression,X
LDA *label expression,Y

Indexed Indirect

LDA (label expression, X^

Indirect Indexed

LDA (label expression),Y

Indirect

JMP (label expression)

Accumulator

ASL A letter A followed with a space
indicates accumulator addressing
mode.

i

16.

Implied

TAX Operand field Ignored
CLC

Relative

BEQ label expression

B. Label File (or symbol Table)

A label file is constructed by the assembler and may be outputted
at the end of assembly (if a .LC pseudo op was not encountered)
or via the >LA command. The output consist of each label
encountered in the assembly and its hex address. A label in the
label file which begins with a slash (/) indicates that it was
defined as an external label. All others are considered as
being internal labels. When a relocatable object file is
generated (via ^OU command), any instruction which referenced
an internal label or a label expression which consisted of at
least one internal label will be tagged with special information
within the relocatable object file. The relocating loader uses
this information to determine if an address needs to resolved
when the program is moved to another part of memory.

Conversely, instructions which referenced an external label or
a label expression consisting of all external references will
not be altered by the relocating loader.

At the end of the label file the number of errors which
occurred and program break in the assembly will be outputted
in the following format: //xxxx,yyyy,zzzz

Where xxxx is the number of errors found in decimal representation,
yyyy is last address in relation to .BA, and zzzz is last address
in relation to .MC.

C. Assembling not from tape

With the source program in the text file area, simply type >AS
x. Assembly will begin starting at line number x. If a .CT
pseudo is not encountered, both passes will be accomplished
automatically. If a .CT pseudo op was encountered, the >PA
command would have to be executed to perform the second pass.

D. Assembling from tape

Source for a large program may be divided into modules, entered
into the text file one at a time and recorded (>PU) on tape.

17.

At assembly, the assembler can load and assemble each module
until the entire program has been assembled. This would
require two passes for a complete assembly. When assembling
from tape, the file indentification number assigned to the
modules is ignored.

Source statements within a module and the modules themselves will be
assembled in the order in which-they are encountered.

The ASSM assumes that if an end of file condition is encountered
before the .EN pseudo op and a .CT pseudo op had not been
encountered, an error is present (107 AT LINE xxxx)

When assembling from tape, the assembler should encounter a .CT
pseudo op before the end of the first module. Two ways to

accomplish this are:

1. a) Load the first module via the >GE command,
b) This module should contain a .CT pseudo op

or
2. a) Clear the text file via the >CL command

b) enter >9999 .CT
9999 is entered since one may have requested any
assembly beginning with a line number. This
insures that the .CT gets executed.

Next ready the play deck and type >AS x. Either way the ASSM will
start and stop tape deck 1 in the assembly process until the .EN
pseudo op is encountered. At that point tape deck 1 is turned off,
and the message READY FOR PASS 2 is outputted.

One is now in the TED mode. Rewind the tape deck (_£0N 1 and >0F 1
o? T1 accordingly). Perform 1 or 2 as described above and type

PASS to perform the second pass Again tape deck 1 wiil be
turned on and off accordingly under control of the ASSM software.

E. Creating a relocatable object file (>0U)

In order to create a relocatable object file, the programmer
should define those labels whose address should not be altered
by the relocating loader. This is done via the ,DE pseudo op.
Non-symbolic labels (example: $0169) are also considered as
kging external. All other labels (including those defined
via the .DI pseudo op) are considered as internal. Addresses
associated with internal labels are altered by an offset when
the program is loaded via the relocating loader.

t

i

18.

Also, the .SE stores a two byte external address and the .SI
stores a two byte internal address. Similarily the relocating
loader will alter the internal address and not the external
address.

An example of an external address would be the calls to your ROM
monitor or any location whose address remains the same no matter
where the program is located. Locations in zero page are
usually defined as external addresses. Expressions consisting
of internal and external labels will be combined and considered
an internal address. A label expression consisting entirely
of external labels will be combined and considered as external.

To record a relocatable object file, insert a blank tape in
tape deck 0 and ready. If the entire source program is in memory,
simply type >0U.

If the source program is on tape, ready as described in 1 and 2
in part 3D and thentype >0U. The ASSM will turn both tape decks
on and off until the end of assembly. The relocatable object
file will be recorded on the tape in deck 0.

After the relocatable object file has been recorded, record
an end of file mark via the >PU X command.

F. Macros

ASSM/TED provides a macro capability. A macro is essentially
a facility in which one line of source code can represent a
function consisting of many instruction sequences. For example,
the 6502 instruction set does not have an instruction to
increment a double byte memory location. A macro could be
written to perform this operation and represented as INCD (VALUE.l).
This macyo would appear in your assembly language listing in the
mnemonic field similar to the following:

BNE SKIP
NOP

1
INCD (VALUE.l) ; INCREMENT DOUBLE
LDA TEMP

1
Before a macro can be used, it must be defined in order for
ASSM to process it. A macro is defined via the .MD (macro definition)
pseudo op. Its form is :

111label .MD (Ll L2 ... Ln)

Where label is the name of the macro (1*1 must preceed the label),
and Ll, L2,..., Ln are dummy variables used for replacement with
the expansion variables. These variables should be separated using
spaces, do not use commas.

To terminate the definition of a macro, use the .ME (macro end
pseudo op).

For example, the definition of the INCD (increment double byte)
macro could be as follows:

11IINCD .MD (LOC)
INC LOC
BNE SKIP
INC LOC+1

SKIP -ME

INCREMENT DOUBLE

This is a possible definition for INCD. The assembler will
not produce object code until there is a call for expansion.
Note: A call for expansion occurs when you enter the macro
name along with its parameters in the mnemonic field as INCD
(TEMP) or INCD (COUNT) or INCD (COUNT+2)
or any other labels or expressions you may choose.

Note:In the expansion of INCD, code is not being generated
which increments the variable LOC but instead code for the
associated variable in the call for expansion.

If you tried to expand INCD as described above more than once,
you will get a J06 error message. This is a duplicate label
error and it would result because of the label SKIP occurring
in the first expansion and again in the second expansion.

There is a way to get around this and it has to do with making
the label SKIP appear unique with each expansion. This is
accomplished by rewriting the INCD macro as follows:

J 11 INCD
• • ♦

.MD (LOC) ;INCREMENT DOUBLE
INC LOC
BNE ...SKIP
INC LOC+1

. . .SKIP .ME

The only difference is ...SKIP is substituted for .SKIP. What
the ASSM does is to assign each macro expansion a unique macro
sequence number (2**16 maximum macros in each file). If the
label begins with ... the ASSM will assign the macro sequence
number to the label. Thus, since each expansion of this macro
gets a unique sequence number, the labels will be uniqhe and
the J06 error will not occur.

If the label ...SKIP also occurred in another macro definition,
no 106 error will occur in its expansion if they are not nested.
If you nest macros (i.e. one macro expands another), you may
get a !06 error if each definition uses the ...SKIP label.

20.

The reason this may occur is that as one macro expands another
in a nest, they each get sequentially assigned macro sequence
numbers. As the macros work out of the nest, the macro sequence
numbers are decremented until the top of the nest. Then as ^u^er
macros are expanded, the sequence numbers are again incremented.
The end result is that it is possible for a nested macro to
Uavp the same sequence number as one not nested or one at a different
levll in another nest. Therefore if you nest macros, it is suggested
that you use different labels in each macro definition.

Some futher notes on macros are:

1) The macro definition must occur before the expansion.

2) The macro definition must occur in each file that references
it. Each file is assigned a unique file sequence number
(2**l6 maximum files in each assembly) which is assigned
to each macro name. Thus the same macro can appear in
more than one file without causing a 106 error. If a
macro with the same name is defined twice in the same file,
then the !o6 error will occur.

3) Macros may be nested up to 32 levels. This is a limitation
because there is only so much memory left for use in the stack.

4) If a macro has more than one parameter, the parameters
should be separated using spaces - do not use commas.

5) The number of dummy parameters in the macro definition
must match exactly the number of parameters in the call
for expansion.

6) The dummy parameters in the macro definition must be symbolic
labels. The parameters In the expansion may be symbolic or
nonsymbolic label expressions.

7) If the .ES pseudo op is entered, object code generated by
the macro expansion will be output In the source listing.
Also, comment lines within the macro definition will be output
as blank lines during expansion. Conversely, if .EC was
entered, only the line which contained the macro call will
be output in the source listing.

8) A macro name may not be the same as a 6502 mnemonic, pseudo op,
or conditional assembly operator.

21.

G. Conditional Assembly

ASSM also provides a conditional assembly facility to conditionally
direct the assembler to assemble certain portions of your program
and not other portions. For example, assume you have written
a CRT controller program which can provide either 40,64 or 80
characters per line. Instead of having to keep 3 different
copies of the program you could use the ASSM conditional
assembly feature to assemble code concerned with one of the
character densities.

Before we continue with this example, lets describe the Conditional
assembly operators:

IFE label exp. ——— '

If the label expression equates to a zero quantity, then assemble
to end of control block.___

IFN label exp. ~~

If the label expression equates to quantity not equal to zero,
then assemble to end of control block.

IFP label exp. I

If the label expression equates to a positive quantity (or 0000),
then assemble to end of control block.

IFM label exp.

If the label expression equates to a negative (minus) quantity,
then assemble to end of control block.

Three asterisks in the mnemonic field indicates the end of the
control block.

SET label=label exp.

Set the previously defined label to the quantity calculated
from the label expression.

Note: All label expressions are equated using 16 - bit
precision arithmetic.

f

22

Going back to the CRT controller software example, a possible
arrangement of the program is as follows:

CHAR.LINE .DE 40

f
IFE CHAR.LINE-40

;C0DE FOR 40 CHAR./LINE

IFE CHAR.LINE-64
;C0DE FOR 64 CHAR./LINE

IFE CHAR.LINE-80
;CODE FOR 80 CHAR./LINE

;COMMON CODE

Shown is the arrangement which would assemble code associated
with 40 characters per line since CHAR.LINE is defined as equal
40. If you wanted to assemble for 80 characters, simply define
CHAR.LINE as equal 80.

Conditional assembly can also be incorporated within macro
definitions. A very powerful use is with a macro you don't
want completely expanded each time it is referenced. For example,
assume you wrote a macro to do a sort on some data. It could
be defined as follows:

EXPAND .DE 0
11[SORT .MD

IFN EXPAND
JSR
*■**

SORT.CALL ;CALL SORT

IFE EXPAND
JSR SORT.CALL
JMP ...ABC

jSORT CODE FOLLOWS
SORT.CALL

1
RTS

. ..ABC SET EXPAND=1

In this example, EXPAND is .initially set to 0. When the macro
is expanded for the first time, EXPAND equals 0 and the code
at SORT.CALL will be assembled along with a JSR to and a JMP
around the sort subroutine. Also the first expansion sets EXPAND
to 1. On each suceeding expansion, only a JSR instruction will be
assembled since EXPAND equals 1. Using conditional assembly in
this example resulted in more efficient memory utilization over
an equivalent macro expansion without conditional assembly.

H. Default Parameters on entry to ASSM

. Assumes not assembling from tape (otherwise use .CT)

. Does not store object code in memory (otherwise use .OS)

. Begins assembly at $0200 (otherwise use .BA)

. Output listing set (otherwise use .LC)

. Stops assembly on errors (otherwise use .CE)

. Stores object code beginning at $0200 unless a .BA or ,MC
is encountered and if ,0S is present.

. Object code generated by macros does not appear on the
assembly listing (i.e. default is .EC).

24.

4. EXAMPLES

A. Listing illustrating text entry

An example of the printout which occurs when inputting text
in the text file follows:

^FORMAT SET
>AUTO 10
>100;THIS PROGRAM
OllOSTART TXA
012(5? CLC
0130? OLD
0140? ADC #6
0150?END RTS
0160? .EN
T5T7U?//
?14r^ TAX

'(5151?//

ADDS 06 TO REGISTER X

Note the use of // to terminate the auto
line numbering. ~Auto line numbering can
be restarted by simply entering the line
number where insertion is to begin. To
prevent auto line numbering, simply type

or >AU 0.

>AU

B. Output listing from ASSM

Lifting 1 is a source listing output of a program which provides
a formatted hex dump of a block of memory. It is presently
configured for TIM based systems but can be easily modified for

other systems.

5. USING THE RELOCATING LOADER

A source listing of the relocating loader (listing 2) is provided.
The relocating loader is not part of the ASSM/TED program body,
and the user will have to enter it via the listing.

If you prefer to have the loader to reside in some other part of
memory, you should enter the source into the text file, assemble,
and then create a relocatable object file on tape.

To record a program in relocatable format, first assemble (without a
.OS pseudo op) the program at location 0000 (.BA $0). Next create
a relocatable object file via the ?0U command. Terminate the
relocatable object file with an end of file mark via the ^PU X
command. To reload a program in relocatable format, first enter
the address where you want the program to reside in memory locations
00E0 (lo) and 00E1 (hi), the modules file number in 0110, and
then execute.

25. *

When executing the relocating loader, if an error or an end of
file mark is detected, a break (BRK) instruction will be executed
so as to return to your monitor. The contents of register A
indicates the following:

00 good load
EE error in loading

All programs to be created in relocatable format should be assembled
at $0000. This is because the offset put in 00EQ and 00E1 before
execution is added to each internal address by the loader in order
to resolve addresses while relocating the program. If the
program was originated at say 1000, then one would have to enter
F200 as the offset in order to relocate to 0200 (i.e. F200+1000=
0200). This is somewhat more confusing than an assembly
beginning 0000.

In addition to the program memory space, the relocating loader
uses the following memory loeations.

OOC8-OOC9, 00DC-00E1
0110, 011E-0121, 017A-0184

Plus other stack area for subroutine control.

6. CONFIGURE ASSM/TED FOR DISC OPERATION

ASSM/TED provides the user with four 2-byte address vectors
for linkage to your disc operating system (DOS). They are:

DISCI #F0,#FI

Address vector to your DOS (or patch to DOS) which accepts the
output data filename beginning at $0135jY. The user provided
patch should accept filename characters by incrementing R(Y)
until a space is encountered. If R(Y)=50 hex then your DOS
should instead treat this as a CLOSE output file operation._

DISC2 $FZ>1fF3

Address vector to your DOS (or patch to DOS) which accepts the
input data file name beginning at $0135.>Y. The user provided patch
should accept filename characters by incrementing R(Y) until a
space is encountered. If R(Y)=50 hex then your DOS should
instead treat this as a CLOSE input file operation.

DISCI.VEC ffRo, HFI

Vector to your DOS (or patch) indicating that data is to be
conditionally loaded into memory defined as follows:

26.

LOAD/NO -if =1 then enter in memory.
($123) if=0 then get from disc but don't move to memory.

This is required to skip over files not selected.

START.ADD - start address of memory.
($124-125)

END^ADD - end address of memory.
($126-127) _

DISCO.VEG #FH > tiff

Vector to your DOS (or patch)indicating that data in memory range
START.ADD thru END.ADD is to be stored on disc. LOAD/NO should
be ignored.

7. USING ASSM/TED WITH DISC

Before operating with the disc, the user should set up the
address vectors as described in part 6. This could be done by
executing user provided code using the >RUN command, or simply
manually entering address vectors using-your system monitor.

There are two commands which determine if data is to input or
output from tape or disc. They are:

>ENTER

Enter in disc directory. A vector thru DISCI is performed. If
entered with a filename then an open of the output file is
performed. At this point all output normally going to tape will
go through vector DISCO.VEC. If no parameters are entered, when
your DOS should assume a close operation. At this point any
output will be to tape.

_> LOOKUP

Lookup in disc directory. A vector thru DISC2 is performed. If
entered with a filename then an open of the input file is
performed. At this point all input normally read from tape will
go through vector DISCI.VEC. If no parameters are entered, then
your DOS should assume a close operation. At this point any input
will be from tape.

8. ERROR CODES

An error message of the form (xx AT LINE yyyy/zz where xx is
the error code, yyyy is the line number, and zz is the file number
will be outputted if an error occurs. Sometimes an error message
will output an invalid line number. This occurs when the error
is on a non-existant line such as an illegal command input.

The following is a list of error codes not specifically related

to macros:

ERROR CODE

17 Checksum error on tape load.
16 Illegal tape deck number.
15 Syntax error in >ED command.
12 Command syntax error or out of range error.

II Missing parameter in >NU command..
10 Overflow in line # renumbering. CAUTION—YOU should

properly renumber the text file for proper command
operations,

OF Overflow in text-file - line not inserted.
0-E Overflow in label file - label not inserted.
OD Expected hex characters, found none.
OC Illeggl character in label.
OB Unimplemented addressing mode.
OA Error in or no operand.
09 Found illegal character in decimal string.
08 Underfined label (may be illegal label).
07 .EN pseudo op missing.
06 Duplicate label
05 Label missing in .DE or .DI pseudo op.
04 .BA or .MC Operand Undefined.
03 Illegal pseudo op.
02 Illegal mnemonic.
01 Branch out of range.
00 Not a zero page address.
ED Error in command input.

28.

The following is a list of error codes that are specifically
related to macros and condition assembly:

ERROR CODE

2F Overflow in file sequence count (2**l6 max.)
2E Overflow in number of macros (2**l6 max.)
2B .ME without associated .MD
2A Non symbolic label in SET
29 Illegal nested definition
27 Macro definition overlaps file boundary
26 Duplicate macro definition
25 Quantity parms mismatch or illegal characters
24 Too many nested macros (32 max.)
23 Macro definition not complete at .EN
22 Conditional suppress set at .EN
21 Macro in expand state at .EN
20 Attempt expansion before definition

9. FILE NUMBERS

Information to be recorded on tape via the >PU and >0U commands
may be assigned a file indentification number to distinquish
between other files of information. A file number is a decimal
number between 0 and 99- To enter a file number as a parameter
in the >PU,>0U, or ^.GE commands, begin with the letter 'F'
followed by-the file number. Examples are FO, F17.> F6, etc.
If no file number Is entered with the >PU and >0U commands, file
number 0 will be assigned by default.

When loading, all files encountered will result in the outputting
of their associated file numbers and file length in bytes. The
loaded file has, in addition, the memory range of the location
of the loaded data. Example: >GET F17

F00 01A3
F67 0847
F17 OF93 0200-1193

>

An end of file mark may be recorded via the >PU X command to
indicate the end of a group of files. If an end of file mark is
encountered when loading, FEE will be outputted and a return to
the command mode will be performed.

29.

10. STRING SEARCH AND REPLACE COMMANDS
A. Edit command

A powerful string search and replace, and line edit capability
is provided via the >EDIT command to easily make changes in the
text file. Use form 1 to string search and replace, and form 2
to edit a particular line.

Form 1

>EDIT tSltS2t

A

* x y

Where:

asterisk (*)
subcommands:

t is a non-numeric, non-space terminator
51 is string to search for.
52 is string to replace SI. . . . ,
d is don't care character. Preceed with fo character

to change the don't care, else don't care character

will be <fo by default. . .
* indicates to interact with user vxa subcommands

before replacing SI. . , .
indicates to alter but provide no printout.
A (space) indicates to alter and provide printout,

x line number start in text file,
y line number end in text file,

prompted
A alter field accordingly.
D delete entire line.
M move to next field - don't alter.
S skip line - don't alter.
X exit >ED command
af (control F) - enter form 2

defaults d = %
x = 0

y = 9999
A = (space) print all lines altered

For example, to replace all occurances of the label LOOP with
the label START between lines 100 and 600, enter:

>EDIT .LOOP. START. 100 600

To simple delete all occurrances of LOOP, enter:

>EDIT .LOOP.. 100 600

Use the *,#,andAas described.

The period was used in the above examples as the terminator but
any non-numeric character may be used.

AT the end of the 2.EDIT operation, the number of occurrances of
the string will be output as //xxxx where xxxx is a decimal
quantity.

*

30.

Form 2

> EDIT n

Where: n is line

subcommands: AF
cr

AD
AH

number (0-9999) of line to be edited.

(control F) - Find user specified character,
(carriage return) - retain any remaining part
of a line.

(control D) - delete any remaining part of line,
delete a character.

For example, to change LDA to LDY in the following line
L00P1 LDA #L,CRTBUFFER LOAD FROM BUFFER

Type AF followed with A, then AH, then Y, and then terminate
line with a carriage return.

The corrected line will then be outputted and entered in the text
file.

B. Find Command

If you want to just find certain occurrances of a particular
string., use the _>FIND command. Its form is:

“ A
>FIND tSlt # x y

Where: t, SI, #, A , x, y are as defined in part 10.A.

For example, >FIND /LDA/ will output all occurrances of the

string LDA in the text file.

AT the end of the >FIND operation, the number of occurrances of
the string will be-output as //xxxx where xxxx is a decimal quantity.

A unique use of this command is to count the number of characters
in the text file (excluding line numbers). The form for this is:

>FIND /%/#

11. CONTROL CODES

Ascii characters whose hex value is between hex 00 and 20 are
normally non-printing characters. With a few exceptions, these
characters will be output in the following manner: Ac where
c is the associated printable character if hex A0 was added
to its value. For example, ascii 03 will be output as AC, 18

as AX, etc.

In addition, some of these control codes have special functions
in ASSM/TED.

31.

Control codes which have special functions are:
«

A @ *

A B
AC
a D
A F
a G *

A H *

A I *

* J *

A M *

*0
* Q *
A ip

* X
A y

A Z
*

null (hexOO)
go to Basic
go to Monitor (executes BRK Instruction)
delete - used by >EDIT
find - used by >EDIT
bell -
backspace (delete previous character)
horizontal tab
linefeed
carriage return
continue processing but suppress output to CRT
continue after break operation
(as ATn) toggle Motor Control on deck n
delete entire line entered
jump to location $0000. Return via warm start
terminate processing and go to ">" mode,
escape character

* = Non-printing control character

12. SPECIAL NOTES

. In addition to the program memory space the ASSM/TED uses
the following memory locations

0100 - up depending on type of function
00B9 - 00F8

plus other stack area for subroutine control. The CRT
buffer is in locations 0135 - 0185

. Keep the cover closed on the tape deck as this keeps
the cassette cartridge stable.

. When entering source modules (without .EN) you can perform
a short text on the module by assembling the module while
in the text file and looking for the j07 error. If other
error messages occur, you have errors in the moddle. This
short test is not a complete test but does check to make
sure you have lined up the fields properly, not entered
.duplicate labels within the module, or entered illegal
mnemonics or addressing modes.

32.

. A 64 character/line (or greater) output device should be
used with this program when printing an assembly listing
in order to provide a neat printout without foldover to next
line.

. Any keyboard input greater than 80 characters in length
will be automatically inserted in the text file without
the user having to enter a carriage return.

. Locations $00D5 (lo) and $00D6 (hi) contain the address
of the present end of the label file. This address +2
should contain a zero (a forward pointer).

. Locations $00D3 (lo) and $00D4 (hi) contain the address
of the present end of the text file. This address +2
should contain a zero (a forward pointer).

. The ASSM/TED and the Relocating Loader were designed so that
they will execute in RAM or ROM.

. To find the address of an entry in the text file, output
the line via the PR command, issue the BR command, and
then get the contents of memory location OODD, OODE.
This is an address which points to the end of the outputted
line.

LISTINGS

1. Hex dump program
2. Source listing of relocating loader

TABLES

A) 6502 Mnemonics
B) Pseudo ops
C) Label expression
D) Addressing Modes

F’RbE 01 Listing J.

ASSEMBLE LIST

01 0 0
02 0 0
03 0 0
04 00
05 0 0
06 0 0
07 00
08 0 0
09 00
1 0 0 0
11 0 0
1200
13 0 0
14 0 0
15 0 0
16 0 0
17 0 0
18 0 0
19 0 0
2 0 0 0
£ 1 0 0
£8 0 0
23 0 0

THIS PROGRAM IS PROVIDED AS AM EXAMPLE OF A PROGRAM
WHICH USES VARIOUS FEATURES DESCRIBED IN THIS MANUAL
THIS PROGRAM OUTUTS A HEX LISTING

.BA *0

.DC
CRLF
TBYT
SPACE
SPACES
COUNT
ADDRS
END

.HE $728A

.DE $72B1

.DE $7377

.DE $7374

.DI END+OF+PGM

.DE $0

.DE $01 OA

AT START» SET PRINTER TD BEGIN PRINTING ON
ON 3-RD LINE
START ADDRESS IN ADDRS
END ADDRESS IN END

MACRO DEFINITION — INCREMENT DOUBLE BYTE
.ES

3-RD LINE

84 0 0 ! ! * INCH -MB .*i i *. i i .it.'
85 0 0 INC T l 1
86 0 0 BNE ... ‘rf k
8 7 0 0 I NC ♦X+l
88 0 0 . . .SKIP -ME
89 0 0 ■ !§
3 0 0 0

■
n

0 0 0 0- A 9 0 0 31 0 0 BEGIN LDA “$ 0 0
0 0 08- AA 38 0 0 T AX
0003- 8D 5B 0 0 33 0 0 S T A COUNT
0006- £0 Cl “7 o n « u- 34 0 0 NEXT+LN .JSR CRLF
0009- AD 5B 00

00 0C
000E
001 0
0012

C9
9 0
A 9
8D

3C
OD
o o
5B 0 0

0 017
0 01A
0 01 E
0 01 D
0 01F
0 0£ 1
0 024
0 026
0 029

0 02C
0 02E

A 0 06
2 0 8A
I • l_* II It

- DO FA
-AO 1 0
- A5 01
- 2 0 El
- A 5 00
- 2 0 B1
- 2 0 74

A1 0 0
2 0 B1

l

::5 n fi
36 0 0
37 0 0
38 0 0
39 0 0
4 0 0 0
4 1 0 0
48 0 0
43 0 0
44 0 0
45 00
46 0 0
4 7 0 0
48 0 0
49 0 0
5 0 0 0
51 0 0
58 0 0
53 0 0
54 U 0
55 0 0

LDfl COUNT
5 DEC. 60 LINES PER PAGE

CMP «S3C
BCC SKIP
LDfl
ST A

; ISSUE 6 CRLF-
;to next page

J4.iT i r

; decimal 6 0

LDGP3

SKIP

LDY
JSR
BEY
BNE
LDY
LDA
JSR
LDA
JSR
JSR

SNOW ADDRESS I:
LOOPS LDA

JSR

i; ij ;j

COUNT
AT END OF 6 0-TH LINE

06
CRLF

LOOPS
-8 1 0
♦RDDRS+*1
TBYT
♦flDDRS+$0
TBYT
SPACES

OUTPUTTED
<ADDRStX>
TBYT

TD GO

PAGE OS

*031- AS 01 56 0 0
0033- CP OB 01 5700
003G- 9tf 11 5800
0038- FO 08 5900
003A- SO 8A 78 6 0 0 0 ENB+PGM

003D- 00 6100
003E- EA 68 00
003F- 4C 00 00 63 0 U
004S- AS 00 64 0 0 CKLD
0044- CB OA 01 65 0 0 -

0047- BO FI 66 0 0
67 0 0 NOT^ENB

LBA ♦ADDRS+SOl
CMP ENB+Sl
BCC NOT*ENB
BEQ CKLD
JSR CRLF
BRK
NOP
..IMP BEGIN
LDA ♦ADDRS+SO
CMP END+SO
ECS END+PGM
INCD CABERS'.1 5INCREM

0049- EG 00
004B- DO OS
004D- EG 01

0G4F- so 77 73
0052- 88
0053- DO D7 *

0055- EE SB 00
0058- 4C 06 00

68 00
69 00
7 0 0 0
7100
7S00
7300 END«-OF«-P6M

JSR
BEY
BNE
INC
JMP
.EN

SPACE
;rcy>=bvte

LOOPS
COUNT
NEXT+LN

COUNTER

LABEL FILE: [✓ = EXTERNAL]

/'CRLF=7S8A •••'TBYT=7SB1
/SPACE£=7374 CDUNT=005B

/'END® 01 OA BEGIN= 0 0 00

LDDP3=0017 SKIP= 001B
~ END<-PGM= 003A CKLO=004S
X=0 0 0 0 END+OF*PGM= 0 05

//0000 J005B j 005E

,-SPACE=7377
•••ABDRS=00 00
NEXT *LN= 0 0 06
LOOPS= OfeOSC
NDT^ENB=0049

A DDR

13. SPECIFIC APPLICATION NOTES

A. PET

33-
*

The default file boundaries for PET are: text file =0770-17FC,
label file=l800-lEFC, and relocatable buffer start=lF00. When
entering the upper file boundary via the SET command, enter
the end address minus 3 (example: If the end =1EFF, then enter

1EFC) .

The PET does not treat the ascii character set in the traditional
manner. Thus part 11 dealing with ascii control codes should

be ignored.

PET has a very nice cursor controlled screen editing feature
which ASSM/TED takes full advantage of. Thus references to *H
(backspace), A X (delete line), rubout (delete character), and
EDIT form 2 should be ignored.

The command syntax for the _>GET, j£PUT, and _>0UTPUT commands
is expanded as follows:

Fm "filename"

n=l or 2 representing the selected tape drive
(ex: T2). Default=l.

m=user assigned file number. Default=©

"filename" - filename is a name which must be
enclosed in quotes. Default=null

Example: GET T2 F6 "MEMORY TEST"

When assembling source from tape, ASSM/TED assumes source input
is on deck 1 and any relocatable output to be directed to deck 2.

When ASSM/TED is outputting, the user can temporarily stop the
printout by pressing the STOP key, or suppress the printing but
continuing processing via the OFF key, or terminating both
processing and printing and immediately returning to command mode
via DEL. To continue outputting after depressing STOP, press

any key except DEL or OFF.

GET
PUT
OUTPUT

Tn

Where Tn

Fm

Page 1.variables referenced in the manual were relocated to
3F00 since PET uses most of the stack for load functions and
subroutine linkage. All page 1 variables are offset by 3E00.
For example, a reference in the manual to location 0123 is
actually 0123+3E00=3F23.

Also, zero page references were relocated from ESB-F8 to IB-58
to avoid conflicts with the PET operating system and the Commodore
monitor program. Thus, all zero page variables are offset by
60. For example, a reference in the manual to location 00DD is
actually 00DD+60=003D.

PET Users Notes for the ASSM/TED

The following notes are provided to help you use the ASSM/TED on

One command not previously discussed is SH G (shift graphics) and
SH L (shift lower case). The SH G allows the entry of graphics
characters when the SHIFT key is depressed. The SH L allows the
entry of lower case alphabetical characters when the SHIFT key
is depressed.

. When using the ASSM/TED to save source programs on tape (PUT command)
it writes a separate file header for its own internal control.
As a result, the PET screen will display WRITING name of program
twice before the program is actually saved. Thus, this is normal
for the ASSM/TED.

Always use the PET monitor with the ASSM/TED. This will allow
the user to BREAK from the ASSM/TED to display memory locations, etc.
In addition, if a source program has been assembled and stored
in memory, the PET monitor is used to save the final program on tape

Once the PET monitor has been loaded, the ASSM/TED is started by
typing G 2000 (cold start). If the user has exited the ASSM/TED
with a BREAK command and wishes to re-enter without losing any
data, a warm start can be executed by typing G 2090.

The ASSM/TED makes very good use of the PET editing ability. If
the user wishes to make changes to a line of text, use the PRINT
command to display the desired line and then cusor up and over
to make the desired changes. (A line of text may be copied by
using the method described above to change the line number. The
COPY command may be used to copy multiple lines.)

The ASSM/TED uses a DELETE command to delete a line or range of
lines. The user can, if desired, delete a single line by typing
the line number and hitting RETURN.

Due to a problem in the PET editor ROM (at least on our PET), there
are a couple of strange things to watch out for.

(a) Normally, the ASSM/TED will allow up to 80 characters per line
(that is, two full lines on the screen). However, the last
line (line 24) on the screen will allow only 40 characters per
line (that is, one line on the screen) without giving an error
message or giving a double digit line number. The basic cure
for this is to avoid entering more than 40 characters when on
the last line. If the user wishes to enter more than 40

characters, simply hit CLEAR SCREEN key and then the RETURN key.

(b) When entering a line of text that contains more than 70
characters and the RETURN key is hit, the cusor will move
to a character position on the same line. Hit the RETURN
key a second time to exit the line. Although this is
bothersome, it doesn't affect what has been entered on the
line.

At present, the ASSM/TED does not contain a printer subroutine
to interface with a printer. If the user wishes to add his own
subroutine, you may add a JSR instruction at 37E2, 37E3^ 37E4.
Don't attempt to use memory locations $3F00 to 3FFF for any
reason. This area is used by the ASSM/TED.

%

«

»

PAGE 01 Lia'tiri O’er)

0 0 0 0
0 0 01
0 01 0
0 02 0
0 03 0
0 04 0
0 05 0
0 06 0
0 07 0
0 08 0
0 09 0
01 0 0
011 0
012 0
013 0
014 0
015 0
016 0
01 7 0
018 0
019 0
02 0 0
021 0
022 0
023 0
024 0
025 0
026 0
027 0
028 0
029 0
03 0 0
031 0
032 0
0 33 0
034 0
035 0
036 0
037 0
038 0
0390
04 0 0
04 1 0
042 0
043 0
044 0
04 5 0
046 0
047 0
048 0
049 0
05 0 0
051 0
0520
053 0
054 0

■ LS
-CT

♦♦♦RELOCATING LOADER FDR THE PET ASSISTED

.OS

♦♦♦♦♦COPYRIGHT 1979 BY CARL MOSER
♦♦♦♦♦ ALL RIGHTS RESERVED.

FILE- NO
OFFSET
BUFFER

USER INPUTTED VARIABLES BEFORE EXECUTION
.DE 4;3F1 0 5FILE NIJMBER < 0-99>
.DE *4 0 ?RELOCATOR OFFSET <2 BYTES!:'
-DE S£8 jADDRS . OF R.L. BUFFER

DIRECTIVE

OF

RELOCATOR DIRECTIVES

DESCRIPTION

EXTERNAL £ BYTE ADDRS. PRECEEBS >
DON'T RELOCATE. OTHERWISE RELOCATE

IF

£F

3F

4F

■5F

-** (
•• r I DATA PRECEEBS

«Hs DATA PRECEEBS > L.0 PART FOLLOWS

.AS OR .HS BYTE FOLLOWS.

.SE OR .SI £ BYTE ADDRS. FOLLOWS.

TIJ RN RELOCATOR ON <VIA .RS >.
<RESOLVE ADDRESSES AND RELOCATE

CODE . !:•

6F IA . R C!' .
IJT DO NOT

7F

TURN RELOCATDR OFF
<RESOLVE ADDRESSES

RELOCATE CODE.>

.DS - £ BYTE BLOCK VALUE FOLLOW:

.BA *0800
It 1
5TAPE INPUT FARMS

LOAD-- NO
TST APT
TEND

.DE S3

.DE S3
-DE S3

F£3 0: NO STORE 5 1: STORE
F£4 LOAD BEGINNING AT TSTART
F£6 STOP LOADING AT TEND

HEADER INPUT DATA

PAGE OS

0550 HFILE.-MO .HE ®3F7A HEADER 1
0560 HSTART .HE S3F7B HEADER
0570 HEMB
ft *=*, o ft :

.HE 33F7D HEADER

059 0 5
0600 5VARIABLES
0610 SCRAT .HE 83 F 1E SCRATCH
06SO TEMPI .HE ®3F1F SCRATCH
0630
0640

TEMPS
SAVE

.HE S3FS0

.HE S3F21
SCRATCH AREA
SCRATCH AREA

065 0 A DDRS .HE 33C 4 BYTES DF ADDRESS INFO.
066 0 BUFF.END .HE «T C" £| O END OF S56 BYTE BUFFER
067 0 BUFF.INHEX .DE S3FS4 PRESENT ACCESSED DATA FROM BUFFER
0680
0690
07 00
071 0
07S 0
073 0
0740

; r <: x >
; r <: x >

00: RELOCAtCDR DM
OS: RELDCATDR OFF

?BEGIN EXECUTION AT LABEL START

08 0 0- R2 FF 0750 : START LDX “SFF
08 CE¬ 9ft 076 0 TXS INITIALIZE STACK
OS 03- E8 077 0 I NX R<X> = 00:• SET RELDCATDR INITIALLY TO DM
OS 04- ns 078 0 CL.H
OS 05- SE 21 3F 07 9 0 STX SAVE R < X - 0 0
OS os- 2 0 E3 08 08 0 0 .JSR LDAD*BUFF
os OB- 4C 1 1 08 081 0 -IMP ENTY
03 0E- 2 0 71 09 0820 1

083 0
0840 1

LOOP 1
m

JSR GET*DATA

081 1 - f:9 •M <M 7F
Jl
ENTY CMP «$7F 5 CKG. FOR .HS

OS 13- DO 03 085 0 ENE F'RD . 3F
08 IS¬ 4C ft 7 09 086 0 -IMF' PRD.7F LJIJMP TO PROCESS DIR. 7F
OS 18- C9 3F 087 0 1 PRO,3F CMP «*3F CKG. FOR RELDCATDR DIRECTIVE
081 fl- n o OB 088 0 BNE DP*CKG
OS 1 c- 2 0 71 09 089 0 JSR GET *DATA
081F- 81 3C 09 0 0 STA '•'ADDRS ?X>
0821 - 2 0 85 09 091 0 JSR INC-ADDRS
0824- 4C OE OS 092 0 -IMP LOOP 1
0827- C 9 4F 093 0 1 □F'*CKG CMP “S4F CKG. FDR .SE? .SI
0829- D 0 03 094 0 BNE W:
OS 2 B- 40 ftft 08 095 0 JMF' TWO*BYT*AD
082E- C9 5F 096 0 i W : CMP «®5F CKG. FDR RELDCATDR ON
083 O- no 04 097 0 ENE CKNX
0832- ft 2 0 0 098 0 LDX 0 0
OS 34- FO D8 099 0 BEQ LOOP 1

1 0 0 0
N ;i

OS 3 6- C9 6F 1 01 0 i CKNX CMP «$6F CKG. FOR RELDCATDR OFF
0838— DO 04 1 02 0 BNE NO*REL
083ft- ft 2 02 1 03 0 LDX «S0£
08 SC- DO DO 1 04 0 BNE LOOP 1
083 E- 81 •mJ O’ 1 05 0 NO*REL STA CADDRS ?X> STORE OP CODE
084 0- 2 0 f-»cr

ij .j 09 1 06 0 JSR INC*ADDRS
0843- C9 0 0 1 07 0 CMP s:30 0 CKG . FDR BRK INS'TR .

0845- FO C7 1 08 0 BEQ LOOP 1
084 7- C 9 2 0 1 09 0 CMP «$£0 CKG. FOR JSR INSTR.
0849- FO 5F 1 1 0 0 BEQ TWO*BYT*AD
084 B— SD 21 3F 1 1 1 0 STA 3AVE SAVE R<A>? IT CDNTAINS DP CDDE
084E- -29 9F 1 12 0 AND «®9F

PAGE 03

0 35 0- F0 BC 113 0 BEQ LOOP1
0 cr

* ■< lL. ftB £1 3F 114 0 LDA SAVE RESTORE DP CODE
0 355- £9 ID 115 0 AND 1D
0 357- C9 08 116 0 CMP »S08 TtKG. FOR ONE BYTE INSTR.
0 359- F0 £3 117 0 BEQ LOOP 1
0 35 B- C 9 18 1 18 0 CMP “818 CKG. FOR ONE BYTE INSTR.
0 35D- F0 AF 118 0 BEQ LOOP 1

12 0 0 ■

1210 •MOW * TEST FOR INSTR. CONTAINING 2 BYTES
12 £ 0 ?OF ADDRESS INFORMATION
1 £ 3 0 ■

0 35F- AD 81 3F 1 £4 0 LBft SAVE RESTORE OP CODE
0 36c'— •*"i «***:

C. “ 1C 1 £5 0 AND 1C
o 364- C 9 1C 1 £ 6 0 CMP 1C
0 —i (U, — F0 48 187 0 BEQ TWO*-BYT*-A D
0 368- C 9 18 1£8 0 CMP “$ 18
0 36ft— F0 3E 1£90 BEQ TWD*-EYT*-AD
0 36 C- f 9 oc 13 0 0 CMP -3 0C
0 36E- F0 3ft 131 0 BEQ TWD*-BYT *-RD

1320 m
*

133 0 ;the remaining CONTAIN ONE BYTE OF
13 4 0 ; ADDRESS INFORMAT 1ON

■ i ■_* U
136 0 jPROCSSING OF ON BYTE ADDRESSES AND IMMEDIATE DATA

0 37 0- £ 0 71 09 1 3 7 0 ONE*-BYT*AD J3R GET *-DATR
0 ~i -? ~i 3' r 81 3C 138 0 ST A (ADDRS ?X>
0 375- £0 85 09 139 0 J3R INC*-A DDRS
0 - T» i“. r> ,■ £0 71 09 14 0 0 J SR bET *DftTft
0 37 E- C 9 2F 14 1 0 CMP “$2F CKG. FOR RELOCATOP DIRECTIVE
0 3? n- F0 14 14£ 0 BEQ IMM*-HI CKG. FOR “H ?
0 37 F- C9 IF 14 3 0 CMP 1F CKG. FOR RELOCATOR DIRECTIVE
fl 38 1 - DO 8E 144 0 BNE ENTY

1 45 0 at
J*

1 46 0 ;PROCESS “!_> DATA FOR RELOCATION
0 3 **i ~i »3 *3 8:0 98 09 1 4 7 0 IMM*LO JSP DEC*-A DDRS
0 O |£ _ 18 1480 CLC
0 3 i"“i

•_» r ftl *3 r 14 9 0 LBft <ftDDRS*X>
0 3 C1 Q_

_* t^» 7^ 65 4 0 15 0 0 ft DC ♦OFFSET+3C0 ADD OFFSET LOW PART FOP
0 7< »3 X*

<_» x> 81 3C 1.51 0 ST A -"ADDRS ,X>
0 **"» O T'i

_» *-* JJ £0 »~cr
O •_* 09 158 0 JSR INC*-ADDRS

o 39 0- 4C 0E 08 153 0 BACK*-TO*-Ll -JMF LOOP 1
154 0 ;PROCESS «H j DATA FDR RELOCATION

0 C* O ’ j „ *3 7? .3 8* 0 71 09 155 0 I MM*-HI J SR GET*-BATA LOW BYTE FOLLOWS PEL. DIR.
0 39 6- 18 1 56 0 CLC
o Z* C» "7_

“ 1 65 4 0 157 0 ft DC ♦OFFSET FORM THE L.D ft DDRS . PftRT
0 399- 08 158 0 PHP
fj 39ft— £ 0 98 09 15 9 0 J SR DEC-ftDDRS
0 39D- *~"i *"“*

a 16 0 0 PLP
0 39E- fti 3C 161 0 LDA vftDDRS 5X >
0 3H 0- 65 41 1620 ft DC ♦OFFSET+Sl NOW FORM THE EFFECTIVE «
0 3ftS- 81 3C [63 0 ST ft <: ft DDRS - X >
0 3ft4— £ 0 85 09 164 0 JSR IHC-ftDDR3
0 3ft 7- 4C 0E 08 165 0 JMP LDCJP1

1 6 6 U ■

167 0 ;PROCESSING OF TWO BYTE ADDRESSES
0 8 ft ft— ft 0 08 16 8 0 TWD+BYT+fiD LDY -S02
IJ 8ft C- Q O 16 9 0 XX TV ft
0 SAD- 48 17 0 0 PHft SAVE RCY 1

PAGE 04

08RE- £0 71 09 1710 JSR GET6DATA
08B1- 81 3C 17£0 STA '•.ADDRS , X >

08B3- 20 85 09 1730 JSR INC*ADDRS m

08B6- 68 1740 PL A
08B7- 88 1750 TAY RESTORE RCY>
03B8- 88 1760 DEV
08B9- DO FI 1770 BNE XX
08BB- £0 71 09 1780 JSR GET6DATA
08BE- C9 OF 1790 CMP 4f$OF CK6. FOR RELOCATOR DIRECTIVE
08C 0" DO 03 18 00 BNE XV
Q8C2- 4C OE 08 1810 JMP LOOP 1
08 Co- 48 18£0 XV PHA
OSC 6- £0 ■32 m Imm 09 1830 JSR DEC6ADDPS
Q8C9- £0 9£ 09 184 0 JSR DEC^ADDRS

1850 5DECREMENT BACK TO ADDRESS START
1860 ■

9

08CC- A1 3C 187 0 LDA <ADDRS- X >
08CE- 18 1880 CLC
08CF- 65 40 189 0 ADC ♦OFFSET ADD OFFSET LO

03D1- 81 O «“• 1900 STA <ADDRS»X>
08B3- £0 OR O J 09 1910 JSR INC^ADDRS
08D6- A1 3C 19£ 0 LDA <ADDRStX>
081)8- 65 41 1930 ADC ♦OFFSET+S1 ADD DFFSET HI

08DR- 81 30 1940 STA <ADDRS - X>
08DC- £0 85 09 1950 JSR INC♦ADDRS
08I»F- 68 1960 PLA
08E0- 4C 11 08 1970 JMP ENTY

198 0
m
9

1990 5SUBROUTINE LOAD BUFFER WITH DATA FROM TAPE
9

£000 II J
08E3- A9 7A £010 LOAD^BUFF LDA <f*7A ADDLD OF START OF HEADER

08E5- 8D £4 3F £0£0 STA T START+$ 0 0

08E8- A9 7F £ 03 0 LDA «$7F ADDLO OF END OF HEADER
Ci SER¬ 8D £6 3F £040 STA TEND+S 00
OSE D- A9 01 £ 05 0 LDA 4if.01 HI ADDRS

08EF- 8D •~icr
CLJ 3F £ 06 0 STA TSTART+S01

08F2- 8D O ~7 L. 1 3F £ 07 0 STA TEND+801
08F5- 8D £3 3F £ 08 0 STA LOAD-NO 01: INDICATE TO LOAD

08F8- £0 D£ 09 £ 09 0 JSR USER-LOAD USER LOATBD FROM TAPE ROUTINE
£ 1 0 0 ■

9

£110 ;the above SETS UP AND LOADS HEADER INFORMATION
£ 1 £ 0 ;from tape . THE HEADER CONTAINS THE MODULE FILE
£ 13 0 ;NUMBER !• AND STARTING AND ENDING ADDRESS OF FOLLOWING
£140 ;data.
£ 15 0 ■

n

2160 m

9

08FB- DO 4D £170 BNE ERROR IF Z-BIT FALSE.- THEN ERROR IN LOADING

08FD- A£ 0 0 £180
Z* 1 u fi m

LDX 4if; 0 0

08FF- AD 7D 3F
c. i y j

££00 LDA HEND+S00
09 08- '*“*» 1~~»

1^.1 ££ 1 0 SEC
39 OS- ED 7E 3F £££0 SBC HSTART+SOO

££30 ;CALCULATE NUMBER OF BYTES IN FOLLOWING DATA *

££40
m *

09 06- 8D £3 3F ££50 STA BUFF.END INITIALIZE BUFFER END POINTER

09 09— AD 7E 3F ££60 LDA HEND+S01

0900 ED 70 3F ££70 SBC HSTART+S01
09 OF- DO 39 ££80 BNE ERROR ONLY 256 BYTE BUFFER ALLOWED

PAGE 05

091 1 - ■ A5
0913- 8 D £4
0916- 18
0917- 6D i— O

Q91A- 8D £6
091D- A5 £9
091F- 8 D £5
09££- 69 0 0
09£4— 8D £ i'

0927- AD i o
09£A- F0 08
092C- CD 7ft
09£F- F0 03
093 1 - 8E ■j •“*«

1— -J

0934- £0 D£

3F

3F
3F

3F

3F

3F

3F

3F
03

0937- DO 11
0939- R£ 00
093E- RD 7R
093E- C9 EE
094 0- DO OC
0943- R9 00
0944- 00

ER
ER
4C 0 0
R9 EE

3F

0943

0947-
094R-
094C-

08

D U F fct

094 E
0951
0953
0956
0958
095 R
095 C
095 D
095F
0961

RD
FO
RE
RO
£1
85 3E
f o

f—1

B1

9 0
£1
f i n

* : it

3F

3F

• « cr
i i. I

— 1_»I '
til .

* «i »
i_it

3F
£4 3F

££9 0
£3 0 0
£31 0
£3£ 0
£33 0
£34 0
£35 0
£36 0
£37 0
£38 0
£39 0
£4 0 0
£41 0
£4£ 0
£ 4 3 0
£44 0
£450
£ 4 6 U
£47 0
£48 0
£49 0
£5 0 0
£51 0
~l cr •” I-; I_ C_ U

in ...«-3 y
£54 0
£55 0
£560

LDR ♦BUFFER
STR TSTRRT
CLC
BBC BUFF.END « BYTE:*:
3TR TEND
LDR ♦BUFFER+* 01
STR TSTRRT+*01
RDC tt*00
STR TENP+J.01

jNOU iHE START AND END ADDRESS PARRS HAVE BEEN
“SET UF TO LORD FROM TAPE INTO THE BUFFER.

LDR FILE •-NO USER ENTERED FILE NUMBER.
BEQ STORE.DATA IF F« = 00? LORD ANYWRY
CNR HFILENO CMP WITH USEF VERSi iS THAT
BEQ STORE.DATA
S T X LORD N D R < X > = 0 > N D STORE

STORE.DATA JSR USER.-T.ORD
M

?THE ABOVE LORDS IN DATA INTO BUFFER DEPENDINR
5DN THE STATE OF LDAB-'NO

FALSE THEN ERROR

£57 0
£58 0
£59 0
£6 0 0
£61 0
£6£ 0
£63 0
£ 6 4 0
£65 0
£66 0
£67 0
£68 0
£69 0
£7 00
£71 0
O "7 ‘Z1 i"
L~ \ U
£73 0
£74 0
£750
£76 0
i_ i r U

£78 0
£79 0

B

BNE ERROR Z-BIT =
L.D.', —* u ij
LDR HFI LE.-'NO
CMP -SEE COMPARE IF END OF FILE
BNE BUFFLORDED
LDR -*00 INDICATE GOOD LORD

NOP
I 1U

ERROR
JMP START
LDR “SEE INDICATE ERROR IN LORD
BNE B

?NOU GET RDDRS. INFO. AND PUT IN RDDRS+*£? +*3
5RDDRS INFO. IS IN FIRST TWO BYTES OF BUFFER

DATA EUFFLOADED L.DA LOAD--NO CFG. IF PROPER
BEQ LOAD*-BUFF
LDX SAVE RESTORE PCX)
LDY “SG0
L.DA TBUFFER> jY
STR ♦RDDRS+*£
I NY
LDR <BUFFER> »Y
STR ♦ADDRS+S3
STY BUFF.INDEX SET BUFFER DATA POINTER

0964-

0966-
0967-
0969-
096E-
096 It-
096F-

ft5 3E £8 0 0 LDR
18 £81 0 CLC
65 4 0 £S£ 0 ADC
85 3C £83 0 STR
ftj 41 £84 0 LDR
6* 5 ”• F £85 0 ADC
y 5 3 d £86 0 STR

PAGE 06

2870 ;
0971 ~ 8E 81 3F 2880 GET+BRTA STY SAVE SAVE
0974- EE 24 3F 2890 INC BUFF.INBE
0977- AC 24 3F 29 0 0 LBY BUFF.INBE
097A- CC C-j 3F 291 0 CRY BUFF.END
097J>- 9 0 03 292 0 BCC WX BP. IF
097F- 4C E3 08 293 0 JMF LORB+BUFF
0982- B1 oo 2940 WX LBR (BUFFER)j
0984- 6 0 295 0 RTS

296 0 ;
297 0 ;
£98 0 5 INCREMENT RBBR S+S0> +$1
299 0 5

0985- E6 3C 3000 INC+RBBRS INC ♦fiBBRS
0987- no 08‘ 3 01 0 BNE SKIP+INC1
0989- E6 3B 3 02 0 I NC ♦RBBRS+S1
098B- E6 3E 3030 SKIP*INC! I NC ♦RBBRS+SS
098 B- DO 08 3 04 0 BNE SKIP+INC8
098F- E6 3F 3 05 0 I NC ♦RDBPS+S3
0991 - 6 0 3060 SKIP*INC2 RTS

3 07 0 5
3 080 !
3 090 ; DECREMENT RBBR S+$0 * +1
31 o o ;

0998- C6 3C 3110 BEC+ABDRS DEC ♦RBBRS
0994- A 5 3C 312 0 LBR ♦RBBRS
0996- G9 FF 313 0 CMP -IFF
0998- fib 08 314 0 BNE SKIP+DEC1
099A- C6 3B 315 0 DEC ♦RBBRS+S1
099C— C 6 3E 3160 SKIP+BEC1 DEC ♦RBBRS+S8
099E- A5 3E 317 0 LBR ♦RBBRS+S8
09A 0- C 9 FF 318 0 CMP j j: »I; p F

09A2- n o 08 319 0 BNE SKIP+BEC2
09 A 4- C 6 3F 32 0 0 DEC ♦ABBRS+33
09 A 6— 6 0 3210 SKIP+BEC2 RTS

IN CASE WE £R. TO LOAD*BUFF

S+$2?« +33

09 A 7
09 A A
09 A B

£0
48
2 0

71

71

09

0‘-

O O f i
i_ i_ u

323 0
324 0
325 0
326 0

O "7 I-!
l_ i U

3 £80

57F LD HI
K *
PRO .7F

- PCL PCH 7F LO Hi

JSR
PHR
JSR

GET+DRTfi
5SRVE LO

GET +BRTR
09RE- A 8 329 0 TRY 5SRVE HI IN r <: y)
09RF- AB 84 3F 33 0 0 LBR BUFF . INBEY
09BS- C9 05 331 0 CMP 05 ;no PRDC. If = 4
09B4- 90 18 j O |i

«. »i_ u BCC ND.PRDC
09E6- 18 3330 PRDC-BS CLC
09E7— 68 334 0 PL A ;get LG
09B8- 48 335 0 PHA
09 B 9
09 EB
09BB
09 BE’
09C 0
09 C 2
09C3-
09C4-
09C5

— hO
y 5

1 > i

65
i 11
• •.

3C

3D
3B

4
1

w
• I
II

- 65 3E

336 0
337 0
333 0
339 0
34 0 0
3 41 0
3480
343 0
344 0

RBC ♦RBBRS
STR ♦RBBRS
TYR ?GET HI
RBC ♦RBBRS+1
STR ♦RBBRS+1
PLA
PHA 5GET LO
CLC
ABC ♦RBBRS+8

v.rX F’AbE 07

09C7-
G9C9-
09CR-
09CC-
09CE-
09CF-

Q9D8-
09D4-
091*7-
091*9-
09DC-
09BF-
09E8-
09E5-
09E7-
09E9-

09EA-
09ED—
09F 0-
09F3-
09F6-
09F9-
09FC-
09FE-
0R 0 0-

3445 .BA $9C7
-*446 ■ LS

85 3E 345 0 STR ♦RBBRS+£
98 346 0 TYR ;get HI
8 5 3F 347 0 RDC ♦RBBRS+3
85 3F 348 0 STR +ABBRS+3
68 3490 NO . F'RDC PLR
4C 0E 08 35 00

351 0
■ y

•JMP LDOP1
. ■ ■*' • • . ’

35£ 0 ■
n «

353 0 ■
n

3540
-»cr cr i“.

; ♦♦♦
■

PET C :RSSETTE INTERFACE PATCH ♦ ♦♦
“«. j H
-156 U

n

■
n

357 0 ;F'ET BEFINITIOh IS:
3580 VERCK • BE *0£0B 5=1 THEH VERIFY
359 0 t •** •* •* .BE SF667 5SET UP BUFFER RBBRS POINTER
36 0 0 GST El .he *F83B 5START TAPE MESS.
361 0 LD300 .HE SF3FF jPRINT FILE NAME
368 0 FNLEN .BE *EE 5LENGTH OF FILE NAME
363 0 FRF .BE SF495 5RERD HEfiBER BY NAME
3640 FRH .BE SF5AE 5RERB ANY HEfiBER
365 0 LDRD£ .BE 8F64B 5COPYSTRRT»ENB RBBRS
366 0 LD4 00 .BE SF4££ 5LDABING MESS.
367 0 TRD .BE 8F88R 5RERB BRTR
368 0 TWA IT .BE SF913 5 WAIT FDR KEY. IRQ
369 0 STATUS .BE $ 0£ 0C ;TRPE ERROR STATUS
37 0 0 ■ ■i
371 0 STRL .BE SF7
—i "7 •*' ■ -• r c. u SfiL .BE *E3
“j ”7 •”*i l-!
_1 | M STRH .BE SF8
374 0 SRH .BE *E4
3750 ERL .BE SE5 *

376 0
3770
378 0

ERH
m

.BE SE6

■ ji
R8 0 0 3790 USER.'-LORD LBX 4r!ji 0 0 i. '

8E OB 08 38 0 0 STX VERCK
86 EE 381 0 t v 1 » i ♦FNLEN ;file name length
8 0 67 F6 ”> o ■-* n

—• O L. IJ JSR •ill all ill C ;SET UP CASS. BUFFER POINTER
8 0 SB F8 383 0 JSR CSTEl 5START TAPE MESS
8 0 FF F3 384 0 JSR LBS 0 0 5PRINT FILE NAME
8 0 RE F5 385 0 JSR FRH jSEARCH FDR ANY HEfiBER
no 03 386 0 BNE SK.LORB£
R9 EE O "7 f 1

O i U EXIT .ERRL1 LBR «*EE
6 0 3880 RTS 5Z=F THEN ERROR

3890 ■
JI

8 0 4D F6 39 0 0 SK. LDAB£ JSR LBR 1*8 5CDPY STARTjENB RBBRS
O i“i
l_ U 01 OR 391 0 JSR OFFSET .RBB
£0 88 F4 39£0 JSR LB 4-00 SLOADING MESSAGE
8 0 8R F8 393 0 JSR TRIs ;rerb brtr
£0 13 F9 394 0 JSR T l.iJ RIT 5 WAIT FOR KEY. IRQ
AB oc 08 3950 LBR STATUS
£9 1 0 396 0 ANB if-; 0 0 01 0 0 0 o ;trpe ERROR TEST
DO E7 3970 BHE EXIT.ERRL1
6 0 398 0 RTS ;Z=T THEN LORD OK

F'RGE 08

3990 ■
4

OR 01- RD £4 3F 4 0 0 0 OFFSET.ADD LDR TSTRRT
Oft 04- 85 F7 4 01 0 STR ♦ST RL
Oh 06— 85 E3 4 0£ 0 STR ♦SRL
OR 08- RD £5 3F 4 030 LDR TSTRRT+1
Oft 0E- 85 F8 4 040 STR ♦STflH
OR OD¬ 85 E4 4 050 STR ♦SRH
OR 0F- RD £6 3F 4060 LDR TEND
OR1 £- 85 E5 4070 STR ♦ERL
Oft 14- RD £7 3F 4 080 LDR TEND+1
OR17- 85 E6 4 090 STR ♦ERH
OR19- 60 41 0 0 RTS

4110 • !•
41 £ 0 ■

413 0 END .PGM .EN

LRBEL FILE: C -•" = EXTERNAL]

/¥ ILE-- N0=3F 1 0
.-'L D RD -' NO=3F £ 3
-HFILE.-'N0=3F7A
••'SCRRT=3F1E
"SRVE=3F£1

••■ BUFF . INDEX=3F£4
£NTY=081 1
W: = 08£E
ONE+BYT ^-RB= 087 0
IMM*HI=0893
XV= 08 C 5
E=0944
GET «-DRT fl“0971
SKIP*INC1 = 098B
SKIP+DEC1 = 099C
PROC.DS=09E6

ZZZZ=F667
-FNLEN=00EE
.-' L D R I' 8=F 6 4 B
.-'TWflIT=F913
,"SAL= 0 0E3
.-"ERL= 0 0E5
EXIT.ERRL1=09E7
END .PGM=0A1A

0 0 0 0 * Oft 1 ft ? OR 1R

.-•OFFSET = 0 04 0
•-"TSTRRT=3F£'4
•-'HSTRRT=3F7E’
•-'TEMP 1 =3F IF
--'RBDRS= 0 03C
STRRT=08 0 0
PRO .3F= 0818
CKNX=0836
IMM*LO=0883
TWD^BYT •<-flD= 08RR
LGRD*BUFF=Q8E3
ERROR* 094R
l...!X= 098£
SK I F'<-1 HC£= 0991
SKIP*-DEC£=09R6
NO . F'ROC= 09CE
■-CSTE1 =F83B
-FRF=F495
. -■ L D4 0 0=F 4 £ £
.-- S T fi T U S = 0 £ 0 C
.-"STAR* OOFS
■- ERH= 0 0E6
SK „LDRB£=09Efi

-BUFFER= 0 0£8
-TEND=3F£6
-HEND=3F7D
.-•TEMP£=3F£0
-BUFF.END=3F£3
LOOP1 = 08 OE
OF'+-CKG= 08£7
NO^REL* 083E
BRCfc>TD*L1 = 0890
XX= 08RC
STORE . DRTR=0934
BUFFLDRDED=094E
INORDDRS=0985
DEC+-RDDRS*099£
PRO .7F=Q9R7
•-'VERCK* 0£ OB
•"L0300=F3FF
•FRH=F5RE
-TRD=F88fi
.-•'STRL=00F7
-•SRH=00E4
IJSERv LDRD= 09D£
OFFSET.RDD=0R01

B. APPLE

The default file boundaries for APPLE are: text file = 0800-17FC
label file = 1800-1EFC, and relocatable buffer start = 1F00.
When entering the upper file boundary via the >SET command, enter
the end address minus 3 (example: If the end = 17FF, then enter

17FC) .

The APPLE II computer does not have tape motor control support.
Thus the >0N, >OFF, and *T functions are not implemented.

Since the APPLE II is deficient in a cassette record start
sequence, the user is required to position the tape.at the
recorded leader tone before executing the cassette interface
software. Thus, APPLE II users may experience difficulty in
using ASSM/TED to assemble program modules from tape, and in
using the relocationg loader.

ASSM/TED for the APPLE uses BB-F8 of zero page and most of the
bottom of the stack (0100 up).

PAGE 01 k»s4»tf\g 2, (APPLE2T)

>ASSEMBLE LIST

0 01 0
0 02 0
0 03 0
0 04 0
0 05 0

; ♦♦♦RELOCfiT I H6 LOADER FOR THE APPLE II fi

■
4

M.-TED***

0 06 0
0 07 0
0 08 0
0 090

;♦♦♦♦♦COPYRIGHT 1979 BY CARL MOSER
ALL RIGHTS RESERVED.

01 0 0
01 1 0
01 £ 0
013 0
014 0
015 0
016 0

!•
■
4

FILE.'NO
OFFSET
BUFFER

USER INPUTTED
.BE $0110
.BE $E0
.BE $08

VARIABLES BEFORE EXECUTION
;file number co-99>
?RELOCATOR OFFSET <2 BYTES!:-
SADDRS. OF R.L. BUFFER

0170 ;
018 0 j
019 0 ■ J
02 0 0

■
!• RELOCATOP. BIRECTIVES

021 0 •
4

0220 ■
4 DIRECTIVE DESCRIPTION

0230
a

!*

0240
a 4 OF EXTERNAL 2 BYTE ADDRS. PRECEEDS»

0250 a ? T,ON "T RELOCATE. OTHERWISE RELOCATE
026 n a ?
027 0 u * IF . ? BATA PRECEEDS .
0280 a

4

029 0 a
4 2F s-H) BATA PRECEEDS t LO PART FOLLOWS

03 0 0 5
031 0 a !• 3F .AS OR .HS BYTE FOLLOWS.
032 0

a j
033 0 a

4 4F .SE OR .SI 2 BYTE ABBRS. FOLLOWS.
0340 a

4

035 0
a !» 5F TURN RELOCATOR ON CVIA .RS> .

0360 a

4 CRESDlVE ADDRESSES AND RELOCATE
037 0 a

4 CODE .
038 0 a ?
039 0 a !» 6F TURN RELOCATOR OFF CVIA .RC>.
04 0 0 R

4 <RESOLVE ADDRESSES BUT DO NOT
04 1 0 a

4 RELOCATE CODE . >
042 0 a

4

043 0 a
4 7F .US - 2 BYTE BLOCK VALUE FOLLOWS.

044 0 a !»
0450 a

4

046 0 a Bfi $ 08 0 0
0470 a

4

048 0 a

!» TAPE INPUT FARMS
0490 LOADING BE $0180 0: NO STORE? 1: STORE
05 0 0 T START DE $3C LORD BEGINNING AT TSTART
051 0 TEND DE $3E STOP LOADING AT TEND
0520 a

4

053 0 a

?

0540
a
4 HERDER INPU iT DATA

055 0 HFILE.-ND BE SOI7A HEADER FILE NUMBER

PRGE OS

0560 HSTART .DE *017E HEADER START
0570 HE HD .DE *017D HEADER END
058 0 ■

9

0590 •
9

06 0 0 ?VARIABLES
061 0 SCRAT .DE SUE SCRATCH AREA
062 0 TEMP 1 .DE *1 IF SCRATCH AREA
063 0 TEMP2 .DE *120 SCRATCH AREA
0640 SAVE .DE *121 SCRATCH AREA
065 0 fibers .DE *BC 4 BYTES OF ADDRESS INFO.
066 0 BUFF.END .DE *0123 END OF 256 BYTE BUFFER
0670 BUFF.INDEX .DE *0124 PRESENT ACCESSED DATA FROM BUFFER
068 0 ■

9

069 0 ■
9

07 0 0 5 R < X > = 0 0 : RELOCA+COR ON
0710 ;r<:x:>=02 : RELOCRTDR OFF
0720 ■

9

0730 jBEGIN EXECUTION AT LfiBEL START
0740 ■

9

080 0- ftft FF 075 0 START LDX “*FF
0802- 9ft 0760 TXS INITIALIZE STACK
08 03- E8 0770 I NX RCX> = 00: SET RELOCATOR INITIALLY TO ON
0804- B8 078 0 CLD
0805- 8E 21 01 0790 STX SAVE P. C X > = 0 0
0808- 20 E3 08 08 0 0 JSR LOAD«-BUFF
08 OB- 4C 11 08 081 0 JMP ENTY
08 OE- 20 71 09 082 0 LOOP 1 ■JSR GET^DATA

083 0 ■
9

0811- C9 7F 0840 ENTY CMP “$7F 5CKG. FOR ,DS
0813- DO 03 085 0 BNE PRD.3F
0815- 4C R7 09 086 0 JMP PR0.7F jJUMP TO PROCESS DIR. 7F
0818- C9 3F 087 0 PR0.3F CMP «*3F CKG. FDR RELOCATOR DIRECTIVE
081 ft- DO OE 0880 BNE □P«-CKG
081 C- 2 0 71 09 089 0 JSR GET «-DATA
08 IF- 81 DC 09 0 0 ST ft CADDRSjX>
0821 - 20 85 09 091 0 JSR INC4-ADDRS
0824- 4C OE 08 0920 JMP LOOP1
0827- C9 4F 093 0 OP+CKG CMP «*4F CKG. FOR .SE > .SI
0829- DO 03 094 0 BNE W:
082 B- 4C fift 08 095 0 JMP TWO*BYT«-AD
082E- C9 5F 0960 U: CMP “S5F CKG. FOR RELOCATOR ON
083 0- DO 04 097 0 BNE CKNX
0832- ftp 00 0980 LDX ""S 0 0
0834- FO D8 099 0 BEQ LOOP1

1 0 0 0 ■ !*
0836- C9 6F 1 01 0 CKNX CMP <t*6F CKG. FOR RELOCATOR OFF
0838— DO 04 1 02 0 BNE NO+REL
083ft- R2 02 1 03 0 LDX «* 02
083C- DO DO 104 0 BNE LOOP 1
083E- 81 DC 1 05 0 NO-rREL ST ft CADDRS-X> STORE OP CODE
084 0- 2 0 85 09 1 06 0 JSR INC+ADDRS
0843- C9 0 0 1 070 CMP «*00 CKG. FDR BRK INSTR.
0845- FO r-7 1 1 08 0 BEQ LOOP 1
0847- C9 2 0 1 090 CMP ssSSO CKG. FDR JSR INSTR.
0849- FO 5F 11 00 BEQ TWD4-BYT4-AD
084B— 8D 21 01 1110 STfi SAVE SAVE RCA>5 IT CONTAINS DP CODE
084E- 29 9F 1120 AND
085 0- FO BC 1130 BEQ LOOPl

F'flbE 03

085 8- AD £1
0855- £9 ID
085 7— C9 08
085 9- FO B3
085 E- C9 18
085 D- FO AF

01 1140
115 0
116 0
1170
118 0
119 0
1 £ 0 0
1210
1 £ £ 0
123 0

LDA SAVE RESTORE DP CODE
AND ID
CMP -*08 -f tKG. FOR ORE BYTE INSTR
BEQ LOOP 1
CMP if* 18 CKG. FOR ONE BYTE INSTR.
BEQ LOOP1

m
*

;MDW» TEST FOR INSTR. CONTAINING £ BYTES
50F ADDRESS INFORMATION

085F- HD £ 1 01 1240 LDA SAVE RESTORE

0862- 89 1C 1250 AND if * 1C

0864- C9 1C 1 £6 0 CMP if* 1C
0866- FO 4£ 1 £7 0 BEQ TWO- BYT*-AD

0868- C 9 18 1280 CMP it* 1 8

086 ft- FO 3E 1290 BEQ T 1 □ ♦ BYT*AD
086C- C9 oc 13 0 0 CMP st* oc
086E- FO 3A 131 0 BEQ two^: BYT*-AD

7 0- £0 71 09 U87 U
0873
0875
0878
087 B
087 D
087 F
0881

7B- C9 £F
F 0 14
C9 IF
DO 8E

0
0
0
0
0
o
0

III * I.
—1 U1

III .

I
ij ij ,

j i_i ”

z* o r*.
i i» x.1

38 D-
z: 9 n-

0
0
0
0
0
0
0
fl
0
0

8 0 98
18
Hi DC
65 EG
81 DC

i« i i »,

—1 »_i • J
“t Z? ■_*

396
397
399
39 ft
39 D
39 E
3 HO
3ft 8
3 ft 4

08 R 7

4C 0E

2 0 71
18
65 E 0
08
8 0 98

_ o c» L
A1 DC
65 El
81 DC
£0 85
4C 0E

09

09
08

09

09

09
08

08AA- A0 0£
08AC- 98
08AD- 48
08AE- £0 71 09

13£ 0
13 3 0
13 4 0
1350
1360
13 7 0

?THE REMAINING CONTAIN ONE BYTE OF
: ADDRESS INFORMATION
■
%

5PROCSS ING OF ON BYTE ADDRESSES AND IMMEDIATE DATA

□NE+BYT+AD JSR GET*DATA
1 DC 1380 STA CADDRSsX >
o 85 09 1390 JSR INC♦ADDRS
0 71 09 14 0 0 JSR GET♦DATA

1410
14 £ 0
14 3 0
144 0
1450
1460
1470
148 0

149 0
15 0 0
1510
1520
1530
154 0
155 0
15 6 0
157 0
158 0
159 0
16 0 0
161 0
168 0
163 0
164 0
165 0
16 6 U
167 0
168 0
169 0
17 0 0
1710

CMP if*£F CKG. FDR RELOCATOR DIRECTIVE
BEQ IKK*-HI CKG. FOR “H *
CMP if*IF CKG. FDR RELOCATOR DIRECTIVE
BNE ENTY

a 5
;PROCESS ifL J DATA FOR RELOCATION
IMN-LO .JSR DEC+ADDRS

CLC
LDA <ADDRS >X>
ADC ♦QFFSET+*00 ADD OFFSET LOW PART FDR ifL *
STA <ADDRS>X>
.JSR INC^ADDRS

BACK+TD+-L1 JMP LDOF'l
jPROCESS ifH * DATA FDR RELOCATION
IMM^HI JSR GET♦DATA LOW BYTE FOLLOW-J REL . DIR.

CLC
ADC ♦OFFSET FORM THE LO ADDRS. PART
PHP
JSR DECIDERS
F'LP
LDA vADDRS 70
ADC ♦OFFSET+* 1 NOW FORM THE EFFECTIVE ifH-
STA CADDRS<X>
JSR INC♦ADDRS
JMP LODF'l

II
n

SPROCESSING OF TWO BYTE ADDRESSES
TWO ♦BYT ♦AD L.DY it* 02

TYA
PHA SAVE R CY >
JSR GET♦DATA

till
x

iiti

F'fibE 04

08 B 1 ~ 81 DC 172 0 STA <RBDRS»X>
08 B 3- SO Ci cr •—* 09 173 0 •JSR INC+ADDRS
08B6- 68 174 0 PLR
Uo B7- R8 175 0 TRY RESTORE RCY>
08E8- 88 178 0 DEY
08 B 9— B 0 FI 177 0 BNE XX
08BB- SO 71 09 178 0 JSR GET■c-DATA
08EE- C 9 OF 1790 CMP “SOF CKG. FOR RELOCATDR DIRECTIVE
08C 0- BO 03 18 0 0 BNE XV
03CS— 4 e OE 08 181 0 •JMP LOOP1
08 C 5- 48 182 0 XV PHA
08 C 6- SO 92 09 1830 JSR DEC+RDDRS
08C9- SO 92 09 184 0 JSR DEC+ADDRS

185 0 ;DECREMENT BACK TO ADDRESS START
188 0

■ !•
08CC- fil DC 1870 LDA CADDRS !>X>
08CE- 18 188 0 CLC
08CF- 65 EO 189 0 ADC ♦OFFSET ADD OFFSET LO
08 B 1 ~ 81 DC 19 0 0 STA CADDRS »X>
G8B3- SO 85 09 1910 JSR INC♦ADDRS
Q8B6- R1 DC 1920 LDA CADDRS »X >
08B8- 65 El 193 0 ADC ♦OFFSET+S1 ADD OFFSET HI
08 BR¬ 81 DC 194 0 i- T H *•. H DDR -■ 9 ?•> ••'
OS DC- SO 85 09 1950 JSR INC»ADDRS
08BF- 68 198 0 PLA
08 E 0- 4C 11 08 197 0 JMP ENTY

1980 •
H

199 0 ;SUBROUTINE LORD BUFFER WITH DfiTR FROM T8PE
2 0 0 0

a

*

08E3- R9 79 2 01 0 LOAD+BUFF LDA «S7R ADDLD OF START OF HEADER
i j y E5— 8B 3C 0 0 2 02 0 STA TSTART+*00
OSES- R9 7F 2 03 0 LDA -S7F ADDLD OF END OF HEADER
08ER- SB 3E 0 0 204 0 STA TEND+SOO
08EB- R9 01 2 050 LDA if*01 HI ADDRS
uyEF— 8B 3D 0 0 2 08 0 STA TSTART+S01
08F2- 8B 3F 0 0 2 070 STA TEND+S01
i_i y F5- 8B 8 0 01 2 08 0 STA LOAD-"NO 01: INDICATE TO LOAD
08 F 8- SO D2 09 2 09 0 •JSR USER--LOAD USER LOAtBD FROM TAPE ROUTINE

21 0 0
■
n

2110 ;the above SETS UP AND LOADS HEADER INFORMATION
212 0 ;from tape . THE HEADER CONTAINS THE MODULE FILE
213 0 jNUMBER * AND STARTING AND ENDING ADDRESS OF FOLLOWING
2140
O 1 CT

;data. ■ L_ 1 •_> U
218 0

n
a n

08FB- BO 4D 2170 BNE ERROR IF Z-BIT FALSE ? THEN ERROR IN LOADING
08FB- RS 0 0 218 0 LDX if* 00

219 0 J
08FF- RB 7D 01 22 0 0 LDA HEND+SOO
0902— jO •—1 221 0 SEC
0903- ED 7E 01 SSS 0 SBC HSTART+*0 0

SS3 0 5CRLCULRTE NUMBER OF BYTES IN FOLLOWING DATA
SS4 0

n
n

09 06- 8D 1— 01 SS5 0 STA BUFF.END INITIALIZE BUFFER END POINTER
09 09- AD 7E 01 SS6 0 LDA HEND+S01
09 0G- ED 7C 01 SS7 0 S B L H S T A R T + * 01
09 0F- DO •39 SSS 0 BNE ERROR ONLY 256 BYTE BUFFER ALLOWED
091 1 - fi5 C8 SS9 0 LDA ♦BUFFER

PfibE U5

0913- 8 D 3C 0 0 23 0 0 STA TSTART
091 6- 18 231 0 CLC
091 7- 6D 23 01 232 0 ADC BUFF.END it BYTES
091fi- 8D 3E 0 0 oO fj STA TEND
091 n- A 5 C9 234 0 LDA ♦BUFFER+S01
091 F— 8 Ii 3D 0 0 235 0 STA TSTART+$ 01
092 fi¬ 69 0 0 236 0 ADC itS 0 0
ll 924- 8L 3F 0 0 237 0 STA TEND+S 01

238 0 ; no w THE A TART AND END ADDRESS FARMS HAVE BEEN
£390 ;set UP TO LOAD FROM TAPE INTO THE BUFFER.
24 0 0 ■

0927- AD 1 0 01 24 1 0 LDA FILE--NO USER ENTERED FILE NUMBER
092ft— F0 08 £42 0 BEQ STORE.DATA IF Fit = 00, LOAD ANYWAY
092C- CD 7R 01 243 0 CMP HFILE-NO CMP WITH USER VERSUS THAT
092F- FO 03 244 0 BEQ STORE.DATA
0931 - SE 8 0 01 2450 STX LOAD - NO RQO —0 • NO STORE
0934- £0 D2 09 246 0 STORE .DATA •JSR USER-LOAD

247 0 ■
Jl

248 0 ;the A ED *
V t LOAI S IN DATA INTO BUFFER DEPENDING

249 0 JON THE •r~r ATE OF LOAD- NO
25 0 0

■
|l

0937- DO 11 251 0 BNE ERROR Z-E1T = FALSE THEN ERROR
0939- A £ 0 0 252 0 LEX itS 0 0
093 B- AD 7R 01 253 0 LDA HFILE-NO
093 E- C9 EE 254 0 CMP itSEE COMPARE IF END OF FILE
094 0- DO oc £55 0 BNE EUFFLDADED
0942- A9 0 0 256 0 LDA itS0 0 INDICATE GOOD LOAD
0944- 0 0 2570 E BRK
0945- EA 258 0 NDP
0946- EA £59 0 NOP
0947- 4C 0 0 08 26 0 0 JMP START
094 ft- A 9 EE £61 0 ERROR LDA itSEE INDICATE ERROR IN LOAD
094 C- DO F6 262 0

263 0
264 0

■
BNE B

H

m
H

265 0 ;ndw GET ADDRS . INFO. AND PUT IN ADDRS+S8, +S3
266 0
267 0
2680

SADDR
■

S INFO. IS IN FIRST TWO BYTES DF BUFFER

094E- AD 8 0 01 EIJFFLOADED LDA LOAD-NO CKG. IF PROPER DATA
095 1 - FO 9 0 26 9 0 BEQ LOAD^BIJFF
0953- AE 21 01 27 0 0 LDX SAVE RESTORE R C X >
0956- AO 0 0 271 0 LEY itS 0 0
0958- El C 8 1— 1 L_ u LDA < BUFFER::- ,y
095 ft—

«jC HE O "7 'i"i
i_ i U S T A ♦ADDPS+SE

095C- £74 0 I NY
095 D- B1 C 8 £75 0 LDA <:BUFFER> , Y
095F— 85 DF £76 0 STA ♦ADDRS+S3
096 1 - 8C 24 01 £77 0

2780
279 0

■
STY BUFF.INDEX SET BUFFER DATA POINTER

!•

;set RELDC AT ION ADDRS. IN ADDRS+S0, +S1
0964- H5 HE 28 0 0 LDA ♦ADDRS+42
0966- 18 £81 0 CLC
0967- 65 EO £82 0 ADC ♦OFFSET
0969- 85 DC £83 0 STA ♦ADDRS
096 B- H5 El 284 0 LDA ♦OFFSET+S1
096 B- 65 DF 285 0 ADC ♦ADDRS+S3
096 F- 85 DD 286 0 STA ♦ADDRS+S1

£87 0 ;

PflbE 06

0971- 8E £1 01 £88 0 6ET+DRT8 STX S8VE S8VE
0974- EE £4 01 £890 INC BUFF.INDEJ
0977- fiC 84 01 £9 0 0 LDY BUFF.INDEJ
097fi- CC £3 01 £91 0 CRY BUFF.END
097 D- 90 03 £9£ 0 ECC WX ER. IF
097F- 4;C E3 08 £930 JMP LORD+BUFF
0982- El 08 £940 WX LD8 <BUFFER>O
0984- 60 £950 RTS

£96 0 ■ Jl
£970 ■ !•
£98 0 5 INCREMENT 8DDRS+S0? +*1
£99 0 B

5

0985- E6 DC 3 0 0 0 INC+8DDRS INC ♦8DDPS
0987- DO Q.E 3 01 0 ENE SKIF^INCl
0989- E6 Dt 3 0£ 0 INC ♦8DDRS+S1
098E- E6 DE 3 03 0 SKIP+1NC1 INC ♦8DDRS+*£
098Ii- DO 0£ 3 04 0 ENE SKIPRINCE
098F- E6 DF 3 05 0 INC ♦8DDPS+33
0991 - 6 0 3 06 0 SKIPRINCE RTS

3 07 0 ■

3 08 0 B !•
3 09 0 ?DECREMENT RDDRS+* 0 ■> +1 f
31 0 0 ■ !■

0998- C6 DC 311 0 DEC+RDDRS DEC ♦8DDRS
0994- R5 DC 31 £ 0 LD8 ♦RDDRS
0996- C9 FF 313 0 CMP «*FF
0998- DO 0£ 314 0 ENE SK IP+-DEC1
099h- C6 DD 315 0 DEC ♦8DDRS+T: 1
099C- C6 DE 316 0 SK I F'+DEC 1 DEC ♦8DDRS+S£
099E- R5 DE 317 0 LDP ♦8DDRS+S2
09R 0- C9 FF 318 0 CMP «*FF
098£- DO 02 319 0 ENE SKIP+DECE
0984- C6 DF 3£ 0 0 DEC ♦8DDRS+S3
09R6“ 60 3£ 1 0 SK I P+DEC£ RTS

3££ 0 m
*

3£3 0 m

j

3£4 0 57F LO HI — F’CL F'CH 7F
3 £5 0 ■ !•

09R7- eo 71 09 3£6 0 F'RD .7F JSR GETh(-D8T8
0988- 48 3£7 0 PH8 ?S8VE LD
098B- £0 71 09 3£80 JSR GET«rDRTR
098E- 88 3 £90 TRY 5S8VE HI
098F- 8D £4 01 33 0 0 LDP BUFF.INDEX
09B£- C9 05 331 0 CMP «$G5 ;
09E4- 90 18 o o o ri i_ u ECC NO.PROC
09E6- 18 333 0 PROC.DS CL 6
09B7“ 68 334 0 PL8 5GET LD
09B8“ 48 335 0 PHR
09B9- 65 DC 336 0 8DC ♦8DDRS
09EE- 85 D0 337 0 ST8 ♦8DDRS
09ED- 98 338 0 TY8 ;get hi
09BE“ 65 DD 339 0 8DC ♦RDDRS+1
09C 0- 85 DD 34 0 0 ST8 ♦8DDRS+1
0902“ 68 341 0 PL8
09C3“ 48 34£ 0 PH8 ;get LO
09C4- 18 343 0 0L0
09C5— 65 DE 344 0 8DC ♦PDDRS+E
09C7- 85 DE 345 0 ST8 ♦PDDRS+E

IF <= 4

PAGE 07

0909- 98 •: :i46 0 TYA 5GET HI
09CR- 65 DF S ;i 4 7 0 ADO ♦RDBRS+3

090C- 85 DF G 348 0 STA ♦ADDRS+3

090E- 68 G 349 O NO . F’ROC PLA
090 F- 40 OE 08 G 3*5 0 0 JMP LOOP 1

351 O
■

358 0
■
n

353 O m

354 0 ■ Jt ♦♦♦ APPLE II CASS ETTE INTERFACE PATCH

355 O
m
H

356 O
■

357 O 5APPLE DEFINITIONS:
358 O READ .BE 8FEFD 5READ FROM TAPE
359 O

II *
3 6 0 0

m n
09D2- 80 FD FE 361 O us ER-- LOAD JSR READ ;READ FROM TAPE
09D5- R2 00 368 O L D f'"*i ^' U U
09D7- 60 363 0 RTS

364 O II J
365 O

a !•
"'66 U END. PGM -EN

LRBEL FILE: C .-•' = e:> ETERNAL 3

.-•'FI LE-NO= 011 0 -■•'OFFSET = 0 OE 0 --'SUFFER88 0 008

•-'LD AD-- ND= 0 i 8 0 ,"T START = 0 030 .-'TEND85 0 03 E

-•'HF I LE-'NO=017R -•'HSTART=017B -••HEND=017D

✓SCRAT= 0HE -TEMP1 = 01 IF -•"TEMP 8= 012 0

-■'SA VE= 0121 •-"ADDRS= 00 DO -■• BUFF . END= 0123

--'BUFF . I NDEX= 0124 START85 08 00 LOOP 1 = 08OE

ENTY=0811 PRO.3F= 0818 OP + L Kb= U88 7

W := 082E CKNK=0836 ND+REL=083E

ONE +BYT*AD= 087 0 IMM+L0=0883 BACK+TD+L1=0890

IMM+H1=0893 TWO+BYT+AD=08AA XX85 08AC

XY= 0805 LOAD+BUFF=U8E3 STORE.DATR=0934

B= 0944 ERROR85 094A BUFFLOADED= 094E

GET*DATA=0971 WX=0982 IN0♦ADDRS= 0985

SKIP*-INO 1 = 098B SKIP+INOE=0991 DEC+ADDRS=0992

SKIP-+DEC1=0990 S KIP ♦ D E02 = 09A 6 PRO .7F=09A7

F'ROC . DS = 09B6 NO . PROC= 09CE -••RERD=FEFD

USER-LORD=09D2
0 0 0 0 > 09D8'09D8

END . F'6M= 09D8

«

C. SYM

The default file boundaries for SYM are: text file = 0200-0BPC
label file =OCOO-OEFC, and relocatable buffer = 0F00. When
entering the file boundary via the >SET command, enter the end
address minus 3 (example: If the end = OBFF, then enter OBFC).

ASSM/TED provides software for controlling two tape motors.
ASSM/TED assumes the record deck (deck 0) is connected to the
on board motor control. If the user implements motor control
hardware for the play deck (deck l), ASSM/TED can control it
via pin A-15 ("1" = on, "0" = off).

ASSM/TED for the SYM uses BB-F8 of zero page and most of the
bottom of the stack (0100 up).

PAGE 01 Z (swra-Q

EMBLE LIST

%

0 Cl 1 0
0020
0030
0 04 0
0 05 0
0 06 0
0070
0080
0090
01 0 0
0110
01 £ 0
013 0
0140
015 0
016 0
017 C
018 0
019 0
02 0 0
021 0
0220
0230
0240
025 0
0260
0270
028 0
0290
03 0 0
031 0
032 0
033 0
034 0
0350
036 0
037 0
038 0
039 0
04 00
0410
042 0
0430
044 0
0450
046 0
0470
048 0
0490
0500
051 0
0520
053 0
054 0
055 0

♦RELOCATING LOADER FDR THE SYM-1 ASSM ••••'T E D ♦ ♦ ♦

■ 0

♦♦♦♦♦COPYRIGHT 1979 BY CARL MOSER-
ALL RIGHTS RESERVED.

FILE'NO
OFFSET
BUFFER

USER INPUTTED VARIABLES BEFORE EXECUTION
•DE $0110 5FILE NUMBER <0-99>
.BE $E0 jRELOCATOR OFFSET <2 BYTES>
.DE $C8 SABERS. OF R.L. BUFFER

DIRECTIVE

OF

IF

2F

3F

4F

5F

RELOCRTDR DIRECTIVES

DESCRIPTION

EXTERNAL 2 BYTE ADDRS. PRECEEDS*
DON'T RELOCATE. OTHERWISE RELOCATE

ifL » DATA PRECEEDS .

“H DATA PRECEEDS* LO PART FOLLOWS

6F

7F

.AS OR .HS BYTE FOLLOWS.

.SE DR .SI 2 BYTE ADDRS. FOLLOWS.

TURN RELDCATOR UN CVIA .RS> .
<RESOLVE ADDRESSES AND RELOCATE

CODE.>

TURN RELOCRTDR OFF CVIA .RC>.
<RESOLVE ADDRESSES BUT DO NOT

RELOCATE CODE . >

.DS - 2 BYTE BLOCK VALUE FOLLOWS.

.BA $0200
■

■STAPE INPUT FARMS
LDAD.- ND .DE $0180 0: NO STDRE 5 1: STORE
TSTART .DE $A64C LOAD BEGINNING AT TSTART
1 END .DE $R64R STOP LOADING AT TEND

HEADER INPUT DATA
HFILE'NO .DE $017A HEADER FILE NUMBER

PAGE 0 I

*j 5 6
057
058
059
06 0
06 1
068
063
U 6 *4
0 6 5
0 6« 6'
0 6 7
068

0 HSTfiRT .BE : 4017B HEADER START -a*

0 HE MB .BE : 4017B HEADER END
0
0
0
0
0
0
0
0
0
0
0

?VARIABLES
SCPfiT .BE
TEMPI .BE
TEMPS -BE
SAVE -BE
fiBBPS .BE
BUFF.END .BE
BUFF.INDEX .BE

4HE SCPfiTC
41 IF SCPfiT*
4150 SCPfiT*
4151 SCRATE
4DC 4 BYTES

H
H
H
H

fiF'Efi
AREA
fiPEfi
RREfl

DF ADDRESS IMFD.
401S3 END DF £56 BYTE BUFFER
401£4 PRESENT ACCESSED DATA FROM BUFFER

0690 5
0700 ;r<
0710 ;r<:
072 0 ;

> - 0 0 :
> - 02 :

RELDCAtCDR dm
PELDCATOR OFF

0 5BEGIN EXECUTION RT LABEL START
074 0 ;

02 0 0— ft8 FF 0 7 5 0 START lux “4FF
02 02- 9 H 076 0 T >■ •• INITIALIZE STACK
02 03— E8 U r i*' U I NX R<X> = 00 s SET RELOCATOP INITIALLY TO ON

0204- 8 0 #—• C1 8B 078 0 JSR ACCESS
02 07- ns 079 0 CLD
02 08- 8E 21 01 08 0 0 STX SAVE R<X> = 0 0
02 OB¬ 8 0 E6 08 081 0 JSR LOAD-BUFF
OE 0E- 4C 14 08 088 0 JMP ENTY
0211- 8 0 74 03 083 0 LOOP 1 JSR GET-DATA

084 0 M
4

0214- C 9 7F 085 0 ENTY CMP «S7F 5CKG. FDR .BS
0216- no 03 086 0 ENE PR0.3F
0218- 4C AA 03 087 0 JMP PR0.7F 5JUMP TO PROCESS DIR. 7F
021E- 09 3F 088 0 PRO.3F CMP «*3F CKG. FOR RELOCATOR DIRECTIVE
021B- no OB 089 0 BNE OP-CKG
021F- 8 0 74 03 09 0 0 JSR GET-DATA
0222- 81 DC 091 0 ST A CADDRS
0224- 8 0 i'*’:

O1 •_» 03 098 0 JSR INC-ABBRS
0227- 40 11 08 093 0 JMP LOOP 1
022A- 09 4F 094 0 CP+CKG CMP «44F CKG. FOR .SE» .SI
022C- no 03 095 0 BNE i.t:

022E- 40 Rn 08 096 0 JMP TUO-BYT-AB
0231- O'9 5F 097 0 W : CMP sf$5F CKG. FDR RELOCATOP ON
0233- fi 0 04 098 0 BNE CKNX
0235- R£ 0 0 099 0 LBX if 4 0 0
U i_ r FO ns 1 0 0 0 BEQ LOOP 1

1 0 1 0
■

0839- 09 6F 1 08 0 CK NX CMP «*6F CKG. FOR RELOCATOP OFF

023B- no 04 1 03 0 BNE ND-REL
02 SB- R8 08 1 04 0 LBX if 4 02
023 F- no D 0 1 05 0 ENE LOOP 1
0241- 81 no 1 06 0 NCH-REL. ST A CAB BRS »X > STORE 0P CODE
0243- 8 0 . o : 1 j 03 1 07 0 JSR INC-ABBRS
0246- C9 0 0 1 08 0 CMP i14 0 0 CKG. FDR BRK INS TR.
0248- FO L- 1 09 0 BEQ LOOP 1
024A- 09 8 0 1 1 0 0 CMP if$£0 CKG. FOR JSR INSTR.
024C— FO 5F 1110 BEQ TWO-BYT-AB
024E- sn 81 01 1 1 £ 0 ST A SAVE SAVE RCfi>> IT CONTAINS OP CODE
0251- 89 9F 113 0 AND it49F

c

PAGE 0

ft "• cr _ F0 BC 114 0 EEC! LOOP 1
0255“ OD 21 01 115 0 LEA SAVE RESTORE DP CODE

0258“ 29 in 1 16 0 HMD it*ID
0250“ C9 08 117 0 CMP it* 08 f t KG. FDR ONE BYTE IMSTR.

025C- F0 B3 1 18 0 EEC LOOP 1

025E- C 9 l y 1 19 0 CMP it* 18 CKG. FOP DUE BYTE IMSTR.
026 0“ F0 RF 12 0 0 BEQ LOOP1

12 1 0
■
*

122 0 ; MDW 9 TEST FOP INSTR . CONTfllMIN6 2 EVTES
1230 ?OF ADDRESS IMFOPMAT IDM
124 0

0262“ RD 2.1 01 125 0 LBA SAVE RESTORE OP COBE
0265“ 29 1C 1 £ 6 0 AMD it* 1C
0267— C9 1C 12 7 0 CMP it* 1C

0269“ F0 42 128 0 BEQ TWD*BYT*RB
026B- C9 18 1 2 9 U CMP it* 18
026H“ F0 3E 13 0 0 BEQ TMO*BYT*AB

026F“ C 9 OC 131 0 CMP ‘t* 0C
0271“ F0 3R 132 0 BEQ TND*BYT*RD

m
1 -2> "» U
1 24 0

H

5 THE REMAINING CONTAIN ONE BYTE OF
13 5 0 ; ADDRESS INFORMATION
136 0

■
n

1 3 7 0 5PROCSSIMG OF ON BYTE ADDRESSES AND IMMEDIATE DATA
f | 1= “7 — Uu i 2 0 74 03 1 38 0 ONE* BYT*AD JSR GET +-DATR
0276“ 8 i DC 139 0 ST A (ADDRS -Y'i
fi •"*» “7 O — L» c. r o 8 0 ij

C'
ft ”« 14 0 0 .JSR INC ""-A DDRS'

027B- c. U 74 03 1410 .JSR GET*BATR

027E- C 9 c'F 1420 CMP it*£F CKG. FOP PELDCATCP DIRECTIVE

028 0“ F 0 14 143 0 BEQ IMM*HI CKG. FOP «H»
0282“ C 9 IF 144 0 CMP it* IF CKG. FOP RELOCATOR DIRECTIVE

0284“ I) 0 SE 145 0 BNE ENTY
1 4 6 U

a

H

147 0 ;PROCESS itL, DATA FOR RELOCATION
0286“ 2 0 Qcr 03 i 4 8 0 IM M*L.C J St P D EC* A D D R S’
0289“ 18 14 9 0 CLC
0280- Hi DC 15 0 0 L. D A (A D D R S > X -1
028C“ 65 E0 15 1 0 ADC ♦OFFSET+$00 ADD OFFSET LOW PART FOP it

028 E“ 81 DC 152 0 ST A (AD DPS !>X>
029 0“ 2 0 c* c* 03 153 0 JSR INC*ADDPS

0293“ 4C 11 02 154 0 BACK*TD*L1 JMP LOOP1
155 0 ?PROCESS DATA FOR RELOCATION

0896“ 2 0 74 03 156 0 IMM*HI JSR GET*DATA LON BY TE F0L.L011V PEL. DIR.

029 9- 18 1 C"? 1 j i 0 CLC
0290- 65 EC 158 0 ADC ♦OFFSET FORM THE LO ADDRS. PART
029 C“ 08 159 0 PHP
029D- 2 0 95 03 1 *2' U U JSR DEC*ADDRS
020 0“ •*“: l": a «j 16 1 0 PLP
0201- Ol BC 16 2 0 LDA (ADDRS?XI
0203“ 65 El 163 0 HDC ♦OFFSET**1 NON FORM THE EFFECTIVE «H-

0205“ 81 DC 164 »J ST A (ADDRS <X>
0207“ 2 0 %Zj Cj

i^i • mj 03 1 65 0 JSR INC*ADDRS
02RR“ 4C 11 08 166 0 JMP LOOP!

167 0
C Jl

168 0 jPROCESSING OF TWO BYTE ADDRESSES
02RI»“ R0 02 1 69 0 TNO*BYT*AD LDY it* 02
02 OF- Cl O “ t_r 17 0 0 XX TYA
02 B 0“ 48 1710 PHA SAVE R(Y>

02B1 - £0 74 03
02B4- 81 DC
02B6- £0 Op o o 03
02B9- 68
02BA- R8
02BB- p o

it it

02BC- DO FI
Q2BE- £0 74 03
02 C1 - C9 OF
02C3- DO 03
02C5- 4C 11 02
02C8- 48
02C9- 20 95 03
0£CC- £0 QS m* '** 03

02CF- A1 DC
02D1- 18
02D2- 65* EO
02D4- 81 DC
02 D 6- 2 0 y y 03
02D9- A1 DC
02DB- 65 El
02BD- 81 DC
02DF- £0 Op

ij c 03
02E2- 68
02E3- 4C 14 02

02 E6- A 9 7A
0£ E8- 8B 4C R6
0£ EB- ft 9 7F
0£ ED- 3D 4A R6
0£ F0- A 9 01
0£ F£- 8D 4D R6
0£ F5- SB 4B R6
0£ F8- 8D 8 0 01
0£ FB- £0 D5 03

0£FE- DO 4D
03 0 0- A2 0 0

03 02- AD 7D 01
03 OS- * J IJ

•J I_«

OS 06- ED 7B 01

0309- 8D 01
OS oc - AD 7E 01
03 OF - ED 7C 01
0312- DO QQ

1720
173 0
1740
1750
176 0
1770
178 0
1790
18 0 0
181 0
182 0
1830
1840
185 0
186 0
187 0
1880
1890
19 0 0
191 0
192 0
1930
194 0
195 0
1960
1970
1980
1990
2 0 0 0
2 01 0
2 02 0
2 030
2 04 0
2 05 0
2 06 0
2070
2 08 0
£ 09 0
21 0 0
211 0
2120
213 0
214 0
2150
216 0
217 0
£ 18 0
£ 19 0
£2 0 0
£21 0

£230
£24 0

£260
2270
2 £ o |-,

2290

F'ftbE 04

JSR GET♦BATA
STft (ft DDRS* K>
JSR INC*813HRS
F'Lfi
TRY RESTORE R<Y>
hey

v v
r •> r •.

JSR GET*rDftTft
CMP «$0F CKG. FOR RELDCFfTDR DIRECTIVE

vy t I I

1 1 f
■JMP LOOP1
PHft
JSR DEC*ftDDRS
JSR DEC*ADBRS

5DECREMENT BACK TO ADDRESS START

LB ft CABERS *>0
CLC
ADC ♦OFFSET ADD OFFSET LD
STft CADDPS >X>
JSR INC♦ADDRS
LDA < ft DDRS j ':>

ADC ♦OFFSET**1 ADD OFFSET HI
STA CftBBRS
JSR INC*-AD DPS
PLA
JMP ENTY

■

;SUBROUTINE LOAD BUFFER WITH DATA FROM TAPE
m
n

LDAD+BUFF LDA «$7fi ADDL.D OF START OF HEADER
STA TSTRPT+SUO
LDA «$7F ADLLD OF END OF HEADER
STA TEND+SOO
LDA «*01 HI ADDPS
STA TSTART+S01
STft TEND+S01
STA LOAD- NO 01: INDICATE TO LOAD
JSR USER-LOAD USER LCAt-BD FROM TAPE ROUTINE

*
!THF ABOVE SETS UP AND LOADS HEADER INFORMATION
5FROM TAPE. THE HEADER CONTAINS THE MODULE FILE
;NUMBER* AND STARTING AND ENDING ADDRESS OF FOLLOWING
* DATA.

m 1
BNE ERROR IF Z-BIT FALSE j THEN ERROR IN LOADING
LDX 0 0

M
*

LDA HEND+SOO
SEC
SBC HSTART+tOO

5CALCULATE NUMBER OF BYTES IN FOLLOWING DATA
H

STA BUFF.END INITIALIZE BUFFER END POINTER
LDA HEND+S01

y |Zj p *J + *J; I”| ^

BNE ERROR ONLY 256 BYTE BUFFER ALLOWED

PAGE 05

0 314- 05 C8 23 0 0 LB A ♦BUFFER
0 316- 8D 4C R6 231 0 ST A TSTART
0 319- 18 232 0 CLC
0 31R- 6D 23 01 233 0 ABC BUFF.END « BYTES
0 31D- 8D 4R R6 234 0 ST A TEMB
0 32 0- 05 C 9 c. i- •_* U LBA ♦BUFFER+S01
0 " *3 •**!

JL.L. 8D 4D R6 236 0 ST A TSTART+$01
0 325- 69 0 0 237 0 ABC m 0 0
o ~| “| -7_

• l 1 8D 4E R6 238 0 ST A TEND+S01
239 0 SNOW THE S TART AMB EMB ADDRESS PARMS HAVE BEEN
24 0 0 ;set UP TO LOAD FROM TAPE IMTO THE BUFFER.
241 0 0

n

0 32R- OD 1 0 01 242 0 LBA FILE.-'MO USER ENTERED FILE NUMBER
0 32 D- F0 08 243 0 BEQ STORE.BATA IF F« = 00> LOAD ANYWAY
0 32F- CD 7R 01 244 0 CMP HFILE-MO CMP WITH USER VERSUS THAT
0 " • j O

i— FO 03 245 0 BEQ STORE .BATA
0 334- 8E 8 0 01 246 0 STX L0AB--MO R<X> = 05 MO STORE
0 337- 8 0 D5 03 247 0 STORE .BATA •JSR USER-LOAD

248 0
■
m

249 0 ;the ABOVE LDAI S IN BATA IMTO BUFFER DEPENDING
25 0 0 ;ON THE STATE DF LOAD--HO
251 0

m
?

o 33 ft- DO 11 252 0 BNE ERROR Z-BIT = FALSE THEN ERROR
0 Z* O f* _ —1 •—1 '■.* R2 0 0 253 0

1 T*. % l ! r i x L- x.' i e 0 0
0 33E- RD 7R 01 254 0 LBA HFILE--NO
0 341- C9 EE 255 0 CMP ttSEE COMPARE IF END OF FILE
0 343— DO OC 256 0 BME BUFFLOABEB
0 345- R9 0 0 257 0 LBA «$00 INDICATE GOOD LOAD
0 347— 0 0 258 0 B BRK
o 348- ER 259 0 MOP
0 349— ER 26 0 0 MOP
0 34 H- 4C 0 0 02 261 0 •JMP START
0 34D- R9 EE 262 0 ERROR LBA “SEE INDICATE ERROR IN LOAD
o 34F- DO F6 263 0 BME B

264 0 ■
n

265 0
u
f

266 0 SMDW bET ftBBRS. INFO. AND PUT IN ABDRS+SS» -+S3
267 0 SABDR S INFO. IS IN FIRST TWO BYTES DF BUFFER
268 0

K
n

0 351 - RD 8 0 01 269 0 BUFFLOABEB LBA LOAD.- NO CKG . IF PROPER BATA
0 354- F0 9 0 27 0 0 BEQ LDAB^BUFF
0 5 6— RE 21 01 271 0 LBX SAVE RESTORE R<X >
0 359- R0 0 0 272 0 LBV 0 0
0 35B- El C8 273 0 LBA C BUFFER-- i.Y
0 35B- 85 DE 274 0 STA ♦ADDRS+*£
0 35 F- C8 275 0 I MV
0 36 0- El p o 276 0 LBA (BUFFER)»Y
0 iZ o— O u_ 85 DF 277 0 STA ♦ADBRS+S3
0 o 6 4— 3C 24 01 278 0 STY BUFF.INDEX SET BUFFER BATA POINTER

279 0 ■

28 0 0 ;set RELOC AT I OH ABB R S . IN A BBRS+S0 - +S1
0 367- R5 BE 281 0 LBA ♦ADDRS+S2
0 369- 18 •*i o o ri i—i— u CLC
0 36fi- 65 E0 £830 ABC ♦OFFSET
0 36 C - 85 DC £84 0 STA ♦ADBRS
o >i 6 E— R5 El i— u LBA ♦OFFSET+S1

0 37 0- lZ cr ri .J BF 286 0 ABC ♦ABBRS+S3
0 •”> "7 O_ i i_ 85 BE 287 0 STA ♦ADDRS+S1

TftPE

F'fibE 06

0374- 8E 21 Cl 889 0 3ET+BRTR T v •—* 1 * • SAVE SAVE X IN CASE WE ER. TO LOAD*BUFF
0377- EE £4 01 89 0 0 I NC BUFF. INDEX INC. £56 BYTE BUFFER POINTER
037Fi- flC £4 01 891 0 LDY BUFF.INDEX
037 B— CC i—O 01 898 0 CRY BUFF .END
0380- 90 03 893 0 ECC WX ER. IF NOT AT END DF DATA IN BUFFER
0388- 4C E6 0£ 894 0 •JMP LORD*BUFF RELOAD BUFFER
0385- El C8 895 0 ...IX LDP <BUFFER>-Y
0387- 60 896 0

897 0 m n
RTS

898 0 •
n

899 0 5 INCREMENT RDDR S+S0» +S1 AND RBDRS+$£» +S3
3 0 0 0 ■

n

0388- E6 DC 3 0 1 0 INC^RBDRS I NC ♦RDDRS
038ft— DO 0£ 3 08 0 BNE SKIP* INC1
038C- E6 DD 3 03 0 I NC ♦RDDRS+$1
038E- E6 DE 3 04 0 SK IP* I NC1 I NC ♦ABBRS+$£
0390- DO 0£ 3 05 0 BNE SKIPRINCE
0398- E6 DF 3 06 0 I NC ♦RDDRS+S3
0394- 60 3 070

3 08 0
3 09 0

SKIP* INC£
■

RTS
!•
■ j»

31 0 0 jDECREMENT FIBER •S+*0 j +1 AND RDDRS+*£ » +S3
31 1 0 n

*

0395- C6 DC 318 0 DEC *A DDRS DEC ♦RDDRS
0397- R5 DC 313 0 LDR ♦RDDRS
0399- C9 FF 314 0 CMP “'IFF
039B- DO 0£ 315 0 BNE SKIP^DEC1
039D- C6 DD 316 0 DEC ♦RDDRS+5:1
039F- C6 DE 317 0 SKIP*BEC1 DEC ♦RDDRS+S2
OSfil- H5 DE 318 0 LDR ♦ADDRS+SE
03R3- C9 FF 319 0 CMP «SFF
03R5- DO 0£ 38 0 0 BNE SKIP^DECE
03R7- C6 DF 381 0 DEC ♦RDDRS+33
03R9- 60 388 0

383 0
384 0

SKIP*BEC£
■

RTS

■
H

385 0 57F LD HI — PCL PCH 7F LO HI
386 0

■

03RR- 80 74 03 387 0 PRO.7F JSR GET^DATA
03RD- 48 388 0 PHfi 5 SAVE LD
03RE- 80 74 03 389 0 JSR GET^DATR
03B1- H8 33 0 0 TRY ;SRVE HI IN RY>
03B8- RD £4 01 331 0 LDR BUFF.INDEX
03B5- C9 05 *i> r« U CMP «S05 5NO F'ROC. IF <= 4
03B7- 90 18 333 0 BCC NO.PROC
03B9- 18 334 0 PRDC.DS CLC
03BR- 68 335 0 PLR ;get lo
03BB- 48 336 0 PHfi
03BC- 65 DC 337 0 ABC ♦RDDRS
03BE- 85 DC 338 0 STR ♦RDDRS
03C0- 98 339 0 TYR ;get HI
03C1- 65 DD 34 0 0 RDC ♦ADDRS+1
03C3- 85 DD 341 0 STR ♦ADDPS+1
03C5- 68 348 0 PLR
03C6- 48 343 0 PHfi ;get LD
03C7- 18 344 0 CLC
03C8- 65 DE 345 0 RDC ♦RDDRS+2

PAbE 0?

03CA- 85 HE 346 0 STA ♦ADDRS+2
03CC- 98 347 0 TYA 5GET HI
03CB- 65 Ii F 348 0 ADC ♦ADDRS+3
03CF- 85 Ii F 3490 STA ♦ADDRS+3
03B1- 68 35 0 0 ND.PRDC FLA
OSD2- 4C 11 02 3510 ..IMP LDDP1

3520 ■
n

353 0
■ j

3540 ■ !»
355 0 ; ♦♦♦s')•■ M C A S S E T T E I
356 0 ■

n

357 0 *

358 0 5SYM BEFIN ITIDNS:
359 0 SAVER .HE 88188
36 0 0 ACCESS .DE S8B86
361 0 ID .BE SA64E
362 0 MDDE .DE SFD
363 0 CONFIG .HE S89A5
364 0 ZERCK .HE S832E
365 0 P2SCR .DE 8829C
366 0 LDADT .DE J-8C78
-! 8 7 U NACCESS .DE *8BSC
368 0 RESXAF .DE 88IBS
369 0

m
n

37 0 0 m
n

03D5- 20 l"~l l”*l
1_1 i_: 81 371 0 USER-LOAD JSR SAVER

OSD8- A9 FF 372 0 LDA “SFF
03DA- 8D 4E R6 373 0 STA ID
03DU- AO 8 0 374 0 LDY «$80
O.3I1F- 84 FIi 375 0 STY ♦MODE
03E1- A9 09 376 0 LDA «*09
03E3- 20 A5 O Ci 377 0 JSR CONFIG

03E6- 20 £E OO
O 1 378 0 .JSR ZERCK

03E9- 20 9C O O
K.9 L. 379 0 JSR P2SCR

03EC- 20 7B O f“* 38 0 0 .JSR LDADT+S2
03EF- It8 381 0 CLH
03F 0- A9 0 0 382 0 LDA -8 0 0
03F 2- 9 0 02 383 0 BCC SKPEPRU--
03F4- A9 01 384 0 LDA -SOI

385 0 SKPERRU--L
03F6- 4C B8 81 386 0 ..IMP RESXAF

3870
as
n

388 0
a

!

389 0 END.PGM ■ EN

LABEL FILE: I '•- = E> ETERNAL]

-•• FILE ' ND = 011 0 -•'OFFSET = 0 OE 0
.'•LDAIi.'-ND = 01 8 C» .'TSTART =A64C

5 SAVE REGISTERS
;iD=FF FDR USER RANGE

5BIT 7=1 FDR H.S

;ENTRY IN TAPE LOAD

5Z-BIT =T

;z-bit =F

5RESTORE REGS. EXCEPT A»PSR

•• HFI LE.-'ND= 017A
.''SCR AT=01 IE
-••'SAVE* 0181
.•• BUFF . INBEX=0124
ENTY= 0214
l.i.i : = 0231
DNE *■ B Y T+AH=0£73

••• HSTART = 017B
••TEMP 1 = 01 IF
.••ADBRS=0 ODC
ST ART = 02 00
PRD.3F=021B
CKNX=0239
INM+LO= 0286

.-'BUFFER* 0 0C8
■•• TEND=A64A
.••HEND= 017D
,-TEMP2=0120
.' BUFF . END=0123
LOOP1=021i
DP+CKG=02£R
NQ+REL= 0241
EACK+TO+L1 = 0293

PRGE 08

I I = 0296 TWCREYT+fiB=0£RB XX=0£RF
XY=0£C8 LORB+EUFF=0£E6 STORE.BRTR=0337
E=0347 ERROR*034D EUFFLORBEB* 0351
GET+HRTR=0374 I..JX*0385 IM C *RDB R S = 0388
SKI P<-1NC1 = 038E SK IP* I HC£=0394 DECIDERS* 0395
SKI P«-DEC 1 = 039F SKIP*BEC£=03R9 F'RD . 7F=03RR
PROC.DS=03E9 HO . F'ROC= 03B1 • • SR VER=8188
•• RCCESS=8E86 I D=R64E .'•MOriE=OOFri
••-’CONFI 6=89R5 ■•'ZERCK=83£E ■•P£SCR=8£9C
•-■'LDRIiT=8C78 • ••" H R C C E S S=8 E 9 C RESXRF=81E8
USER/LORD=03H5 S K P E R R UL = 0 3 F 6 END . F‘GM=03F9

//0000j 03F9» 03F9
>

*

